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Counterexamples to the Resolution Conjecture

John L. Bryant

(Introductory notes prepared by Dennis Garity)

John Bryant gave a series of three talks on Counterexamples to
the Resolution Conjecture at the Tenth Annual Workshop in
Geometric Topology. A summary of his talks begins on the next
page of these proceedings.

His talks represent joint work with Washington Mio, Steve Ferry
and Shmuel Weinberger. For background terminology, additional
references and a history of the problem, the reader is referred
to the following two papers and a review of the second paper
which appeared in Mathematical Reviews.

J. Bryant, S. Ferry, W. Mio, and S. Weinberger, Topology of
Homology Manifolds, Bulletin of the American Mathematical
society, Volume 28, Number 2, April 1993, pages 324-328.

Bryant, J.; Ferry, S.; Mio, W.; Weinberger, S. Topology of
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435-467.

A. Ranicki, A Review of “Topology of homology manifolds” by
J. Bryant, S. Ferry, W. Mio, and S. Weinberger,
Mathematical Reviews 97b:57017.



Counterexamples to the Resolution Conjecture

John L. Bryant

Introduction

Definition. A resolution of a generalized n-manifold X is a cell-like map f: M — X where
M is a topological n-manifold.

The Resolution Conjecture. Every generalized manifold X is resolvable.

Theorem. (Quinn) If X is a connected generalized n-manifold, n > 5, then there is at
most one integral obstruction o(X) € Z to resolving X (a local signature). Moreover, this
obstruction has a local character, i.e., it can be detected in any open set.

Theorem (Bryant, Ferry, Mio, Weinberger) If M is a simply-connected, closed manifold
of dimension > 6 and o is an integer, then there is a generalized manifold X homotopy
equivalent to M such that o(X) = o.

The construction of such examples depends upon controlled surgery theory as devel-
oped by Ferry and Pedersen. The theory has been developed in two essentially equivalent
forms: bounded surgery theory and e-surgery theory. We shall outline the construction of

an example homotopy equivalent to S™ using €-surgery.

e-Surgery a la Ferry-Pedersen

Suppose that X and B are finite complexes. A map p: X — Bisa UV! map if p is
onto and each point-inverses. This means, essentially, that p has the approximate lifting
property for maps of 2-dimensional polyhedra into B. X is an e-Poincaré space over B
if X' is triangulated so that diamp(s) < € for each simplex o of X and there is a class
Y € Hp(X) such that y N _:C*(X) — C,_,(X) is an e-chain homotopy equivalence. An
e-surgery problem over B is a degree one normal map ¢: W™ — X. The “problem” is to
find a normal cobordism of ¢ to and e-homotopy equivalence ¢': W/ — X over B. Two
problems ¢1: W' — X and ¢2: W@ — X are equivalent if there is a normal bordism

N
F:(P;W1,Wz) — X extending ¢; and ¢;. Given a UV! map p: N — B, 8, ( ;p)

denotes the set whose elements are represented by p‘l(e)-homotopy equivalences f: M —
N. f:M — N and f': M’ — N are equivalent if there is a homeomorphism h: M — M’

such that the diagram



M

f
hi
M L

N
pi
B

e-commutes over B.

Existence Theorem. (Ferry-Pedersen) Given B and n > 5, there exist g > 0 and T' > 0
such that, for 0 < € < €, if ¢ is an e-surgery problem over B, then there is a well-
defined obstruction o € H,(B, L) that vanishes if, and only if, ¢ is normally bordant to a
Te-homotopy equivalence over B.

H,(B,L) is the generalized homology of B with coeficients in the periodic simply

connected surgery L-spectrum:

Z, if n =0 (mod 4);
L,=427Z/2, ifn=2(mod4);
0, otherwise.

e-Surgery Exact Sequence. (Ferry-Pedersen) Given B and n > 5, there exist g > 0 and
T > 0, depending on B and n, such that, for 0 < € < €, the following sequence is exact:

N
oo — Hpy1(B;L) — Se ( ;P) — [N, G/Top] — H,(B;L),

N

N \
J,p)
B

where Se( I,;P) =im(8{5( gp) —)S}e(

N—

Main Results

Theorem. (Bryant, Ferry, Mio, Weinberger) If n > 6 and o € Z, then there is a generalized
n-manifold X homotopy equivalent to S™ with ¢(X) = o.

Sketch of Proof. Choose a fine triangulation of S™, let Ny denote the boundary of a
regular neighborhood Cj of its 2-skeleton, and let Dy denote the closure of the complement
of Co. Results of Bestvina-Walsh-Ferry guarantee that the identity map on S™ is close
homotopically to a map p: S® — S™ such that the restriction of p to each of Cy, Dy, and
Ny is a UV?! map onto sm. Compare the controlled surgery exact sequence of Ny with
control map p: Ng — S™ to the uncontrolled sequence via the “forget control” map; i.e.,

the constant map S™ — pt:



LOEBLn
I
— [ENo,G/Top] — Ho(S™L) — se( g) ~  [No,G/Top]

1= 4 \: 1=
— [ENo,G/Top] — L, - S(No) — [No,G/Top]

Choose o in the Lo-component of H,(S™;L). (Recall: Ly = Z.) By the controlled
version of Wall’s Realization Theorem there is a degree one normal map F': (W; Ny, Ny) —
(No X I; No X O,No X 1) such that

(a) F|Ny = identity,
(b) fo=projo F|Ni: N1 — Ny is a p~*(e) equivalence over S™, and

(c) the obstruction to doing surgery on W, rel boundary, to get an e-homotopy equivalence

over S™ is .

As an uncontrolled surgery problem, however, the obstruction is 0, hence we may
assume (after doing surgery) that W is (uncontrolled) homotopy equivalent to No x I. By
the h-cobordism theorem, W is homeomorphic to Ny x I. Cut S™ open along Ny, and
glue Cp and Dy together along Ny using f, forming the Poincaré complex X, homotopy
equivalent to S™ via a map po: Xo — S™. We may assume that pg is a UV map, so that
(Po)*: Hp(Xo; L) — H,(S™;L) identifies surgery obstructions. Hence, we may consider
o € H,(Xo; L).

Perform the construction on a finer triangulation of S™ obtaining a Poincaré com-
plex X] = C1 Uy, Dy, f1: N — Ny, a fine homotopy equivalence over Xo with controlled
obstruction ¢, and (UV') homotopy equivalence g;: X! — S™. Composing ¢; and a homo-
topy inverse to pg gives a map p}: X] — Xp. Considered as a controlled surgery problem
over S™, the obstruction to doing surgery on X} to get a fine homotopy equivalence is 0.
Thus we may do surgery (away from Ci) to get a fine homotopy equivalence p;: X; — Xo
over S™. The size of the homotopy equivalence is limited by the size of the Poincaré duality
of Xo. In general, we cut and paste S™ to build finer and finer homotopy equivalences
Pt X; = X; 1 over X; o (X_1 = S™) of finer and finer Poincaré complexes. X;.; is
constructed in RE, for £ large, inside a regular neighborhood of W; of X;. With sufficient
care in the construction, we obtain the desired space X as the intersection of the W;’s.u

Remark 1. One may also construct an example using bounded surgery theory of Ferry-
Pedersen, using the open cone on S™ as (initial) control space.



over X; hence, P may be chosen to be an arbitrarily fine Poincaré duality space over X. =

The construction of Y is now obtained as follows. Get a sequence {U; D P; D K}
as above with ﬂfil U; = X and ¢;-equivalences P; — X. Use controlled surgery to get a,
sequence {W; D Q; D L;}, starting with (U, Py, K1), and homeomorphisms k;: R¢ — R
taking (W;, Q;, L;) to (Us, P;, K;) such that

(@) W12 W2 -,

(b) LiC Ly C--,

(¢) Qit1 is d;-equivalent to Q; over Q;_;, and

(d) h; converges to a cell-like map ®: R® — R that is one-to-one over R —X.

We set Y = (2, W; and ¢ = Y.




Remark 2. The construction can clearly be carried out with S™ replaced by an arbitrary

simply connected manifold M.

Examples with the DDP

A metric space X has the DDP if maps f, g: D? — X of the 2-disk D? into X can be
approximated by maps f’, ¢": D — X with disjoint images.

Theorem. (Bryant, Ferry, Mio, Weinberger) Given a generalized n-manifold X, n > 6,
there is a generalized n-manifold Y with the DDP and a cell-like map ¢: Y — X.

Sketch of proof. The proof is based upon the fact that the second derived subdivision
of a triangulation T of a PL n-manifold N contains both the 2-skeleton and the dual 2-
skeleton of T'. If n > 5, then two maps f, g: D> — N are homotopic to maps f/, ¢': D2 — N
where f’ maps D? into the 2-skeleton of T" and ¢’ maps into the dual 2-skeleton, thus having
disjoint images. The size of the homotopy is determined by the mesh of 7T'.

Lemma. Suppose X is a generalized n-manifold, n > 6, ¢ > 0 and 5 > 0. Then there is
an n-dimensional n-Poincaré complex P over X that is e-homotopy equivalent to X and
contains the 2-skeleton of a triangulation of a mapping cylinder neighborhood of X.

Proof. Embed X as a 1— LCC subset of R, for large ¢, and let U be a mapping cylin-
der neighborhood of X in R¢ with mapping cylinder retraction v: U — X. Choose a fine
triangulation T' of U. An argument, using Quinn’s solution to Connell-Hollingsworth’s ge-
ometric groups conjectures, shows that there is a small collapse of U onto an n-dimensional
complex @ C W that contains the 2-skeleton K of T. @ is an €/-Poincaré complex over
X, where €' depends on the size of the retraction . By results of Ferry-Pedersen, there is
a degree one normal map g: M — X of an n-manifold M onto X, which, after elementary
surgeries, can be assumed to be J-1-connected over X. After approximating g by embed-
ding of M into R, we can get an embedding of K into M that is close to the inclusion of
K in R%. Let o be the resolution obstruction of X and let N be the boundary of a regular
neighborhood C of K in M. Use Wall’s Realization Theorem to realize o by a degree
one normal map F:(V;N,N') - (N x I, N x 0,N x 1) with f = projo F: N’ — N an
n’-homotopy equivalence over X. Form the Poincaré complex Q' = CU #VUigy M — C and
get an e-surgery problem Q' — @ over X that has obstruction 0. Thus, we may do surgery
on Q' away from C' to get an €’-equivalence P — Q over X; hence, and e-equivalence
P — X, assuming a.ppropriafe controls have been imposed so far. Squeezing theorems of
Ferry-Pedersen imply that f may be chosen to be an arbitraxﬂy fine homotopy equivalence



Homotopic Maps to S1 Have Homeomorphic Mapping Swirls,
and Consequence for Pseudo-Spines of 4-Manifolds

by

Fredric D. Ancel and Craig R. Guilbault

We call a compact contractible n-manifold a homotopy n-ball. A subset X of the
interior of a manifold M is called a (fopological) spine of M if M is homeomorphic to the
mapping cylinder of a map from oM to X. X is called a pseudo-spine of M if M=X is

homeomorphic to M x[0,).

In [1] it is proved that for n > 5, every homotopy n-ball has a wild arc spine. ltis
observed, however, that in general homotopy 4-balls don't have arc spines. Infact, a
homotopy 4-ball with an arc spine must be either a 4-ball or the cone over a non-trivial
homotopy 3-sphere (if one exists). Thus, a homotopy 4-ball with a non-simply
connected boundary can't have an arc spine.

The Mazur 4-manifold [6] is a homotopy 4-ball with a non-simply connected
boundary. It is a celebrated consequence of [5] and [3] that the Mazur 4-manifold has
an arc pseudo-spine.

The naively optimistic conjecture motivating this paper is: every homotopy 4-ball
has an arc pseudo-spine. We will reinterpret and generalize the method of [5] through
- the introduction of the mapping swirl construction. We will prove several theorems
about mapping swirls which allow us to produce canonical pseudo-spines for a special
class of compact 4-manifolds which includes the Mazur 4-manifold. (This class of
compact 4-manifolds consists of all those obtained by attaching finitely many 2-handles
to B3x81.) We will then speculate about the possibility of finding simple pseudo-spines
for all compact 4-manifolds and, in particular, for homotopy 4-balls.

1. Motivation: the Psuedo-Spine of the Mazur 4-Manifold

We briefly sketch the proof that the Mazur 4-manifold has an arc pseudo-spine to
motivate subsequent developments. The Mazur 4-manifold M4 is obtained by attaching
a 2-handle to B3xS! along a curve J in 8B3xS1. Corresponding to this description, one
finds that M* has a "dunce hat" spine which is the union of the disk D2 which is the core
of the 2-handle and the mapping cylinder Cyl(z}J) of the restriction to J of the natural
projection x : B3xS1 — {0}xS1 of B3xS1 onto its core. (See Figure 1) Now in the dunce
hat spine, replace the mapping cylinder Cyl(z}J) by the "mapping swirl" Swi(z}J) in which
the fiber emanating from a point p on J, instead of running straight from p to its image
7(p) in {0}xS1, spirals infinitely in the S1-direction in B3xS1 as it approaches {0}x81.
(See Figure 2)) The resulting object D2USwi(x|J) is, according to [5], a pseudo-spine of



M4 and (remarkably) a topological disk wildly embedded in M4. (See Figure 2.) Thus,
M4 has a disk pseudo-spine. The result of [3] then allows us to "squeeze" this disk to
an arc to conclude that M4 has an arc pseudo-spine.

-—
@F =

Ro{ojx 5" N {o3xs!

‘Figure 1 Figure 2

2. The Mapping Swirl Construction: Definitions and Statements of Results

We will now give a formal definition of the object which we called the "mapping
swirl" in the preceding section. For a space X, we define the cone on X, denoted CX),

to be the quotient space [0,%0]xXfo}xX. (It is convenient for our purposes to make this
slightly non-standard definition of C(X) instead of the more usual [0,1]xX/{1}xX) For
(tx) € [0.]xX, we let tx denote the corresponding point of C(X); and we let « denote
the point of C(X) corresponding to {«}xX. We similarly define the suspension of X,
denoted 3 (X), to be the quotient space [-o0,00]xX/{{-c0}xX,{*}xX}; and for (t,x) €
[-0,80]xX, we let tx denote the corresponding point of ¥ (X); and we let + denote the
points of 3 (X) corresponding to {+oo}xX.

oo



Letf: X — Y be a map. To motivate our upcoming definition of Swi(f), we
observe that Cyl(f), the mapping cylinder of f, naturally embeds in C(X)xY. We regard
Cyl(f) as the quotient space Xx[0,%0]UY/~ where ~ identifies (x,%0) with f(x) forxe X. To
embed Cyl(f) in C(X)xY, we identify the equivalence class [(x.t)] € Cyl(f) of the point (x,t)
€ Xx[0,%) with the point (tx,f(x)) € C(X)xY, and we identify the equivalence class [y] €
Cyl(f) of the point y € Y with the point (»,y) € C(X)xY. In other words, Cyl(f) is identified
with the subset '

{ (.f(x)) € CX)xY : (t,x) €[0,9)xX } U ({o}xY)

of C(X)xY. A similar observation reveals that the double mapping cylinder of f,
DbICyl(f), naturally embeds in $(X)xY as the subset

{ (f(x)) € Z(X)xY : (t.x) € (~02,%)xX } U ({-0}xY) U ({o}xY).

Now consider a map f: X — S1. Define the mapping swirl of f, denoted Swi(f) to
be the subset

{ (tx,e2mitf(x)) € C(X)xST : (t,x) € [0,%9)xX } U ({o}xS1)

of C(X)xS1. Similarly we define the double mapping swirl of f, denoted DbiSwil(f) to be
the subset

{ (x.e2m(x)) € T (X)xST : (t,x) € (~00,00)xX } U ({-0,00}xS1).

For eachinteger n, let ¢ : ST — S denote the map ¢n(z) = z"; and let X(n)
denote the adjunction space B2U¢nS1. Thus, X(x1) is a disk, and X(+2) is a projective
plane. Forintegers ny, ng, -, ni, let X(n1, n2, -, nk) denote the adjunction space
(B2x{1,2,-K})UsST where @ : S1x{1,2,--k} — S1 is the map defined by ®(z.i) = ¢n;(2)
forzeS1and 1 <i<k Thus, X(n1, ng, -, nk) is the union of the spaces X(n1), X(ng),
-, X(ng) with all of theirnatural S1 subsets identified.

We now state our main results.

~ Theorem 1. If X is a compact metric space, and f, g : X - S1 are homotopic
maps, then Swi(f) is homeomorphic to Swi(g).

Theorem 2. lf Xisa com pact metric space, n is a non-zero integer, and f: XxSt1
— S1is the map f(x,z) = z", then Swi(f) is homeomorphic to Cyl(f).



Corollary 1. If X is a compact metric space, n is a non-zero integer, f, g : XxS1

— S1 are maps such that f is homotopic to g and g(x,z) = z", then Swi(f) is
homeomorphic to Cyl(g).

Corollary 2. Iff: S1 - Slisa degree n = 0 map, then Swi(f) is homeomorphic

to Cyl(z » 2"). In particular, Swi(f) is an annulus if n = *1, and Swi(f) is a Mobius strip if
n=#2. -

i

Theorem 3. Suppose C1, Cy, -, Cy are disjoint 1 -spheres in (0B3)xS1, and M4
= (B3xS1)U(H{ UH2U--UHy) where H;is a 2-handle attached to B8xS1 along C;, for 1 <i
=k. Letr:dB3xS1 — S1 denote the projection map, and let n; denote the degree of the
map mjCi: Ci— S1for1 <i<k. Then M4 has a pseudo-spine homeomorphic to
X(n1, n2, -, n).

Corollary 3. Suppose C is a 1-sphere in (3B3)xS1, and M4 = (B3xS1)UH where
H is a 2-handle attached to B3xS1 along C. Letn: B3xS1 — S1 denote the projection

map, and suppose that the map mi|C : C — S1 is degree one. Then M4 has an arc
pseudo-spine.

Observe that Corollary 3 includes the fact that the Mazur 4-manifold has an arc
pseudo-spine. ‘

3. Sketches of Proofs of Theorems

Proof of Theorem 1. Letf, g: X — S be homotopic maps.

Step 1. DbISwi(f) is homeomorphic to DbiSwi(g).

~ Observe that DbISwi(f) = (UyexF (x)) U ({-o0,0}xS1) where for each x € X, F(x) is
the “fiber" { (tx,e2H(x)) : t € (-e0,%) } of DbISwI(f) which lies in ((~o0,2)x)xS1 C

(Z(X))xS1. Similarly, DbISwl(g) = (UxexM(x)) U ({-,=0}xS1) where for each x € X, M(x)
is the "fiber" { (tx,e2Mg(x)) : t € (~0,0) } of DbISwl(g) which lies in ((~o0,2)x)xS1. Forx e
X, in ((-0,9)x)xS1 C (3 (X))xS1, we regard (-eo,®)x as the "vertical" direction and S1 as
the "horizontal" direction. We will describe a homeomorphism @ of (3 (X))xS1 which
carries DbISwl(f) to DbISwi(g). @ restricts to the identity on {-o0,0}xS1. For each x € X,
P carries ((—,%)x)xS1 onto itself; and within ((-e0,0)x)xS1, @ is a "vertical” shift that
moves F(x) onto MH(x). (See Figure 3.) Explicitly, there is a vertical shift function o : X
= (-0,%) such that ®(tx,z) = ((t+a(x))x.2) for (t,x) € (<®,®)xX andz€ S!. ois

essentially determined by lifting the homotopy joining fto gin S1to a homotopy in
(-oo,oo), o

10
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Figure 3 Figure 4

In more detail: suppose h: Xx[0,1] — Slisa homotopy such that h(x,0) = g(x)
and h(x,1) = f(x). We exploit the fact that S1is a group under complex multiplication to
define the map k : Xx[0,1] — S1 by k(x,t) = h(x,)/h(x,0). Thus, k(x,0) = 1 and k(x,1)g(x)
=1(x) forx EX. Lete: (-0,0) = S1 denote the exponential covering map e(t) = e2mit,
Let k : Xx[0,1] - (-c2,2) be the lift of k (i.e., ek = k) such that k(x.0) = 0 for all x €X.
Define o : X — (~0,%) by o(x) = k(x,1). Observe that for each x € X, f(x)/e2mio(x) =
f(x)/e(E(x,1)) =1f(x)/k(x,1) = g(x). It is now straightforward to verify that a
homeomorphism @ of (Z(X))xS1 is defined by setting ®(tx,z) = ((t+o(x))x,2) for (t,x) €
(-»®)xX and z € S1, and by requiring that ®[{-c0,0}xS1 = id. To verify that @(DblISwiI(f))
= DbISwi(g), one shows that ®(*F (x)) = (x) for each x €X. To this end, consider a
typical point (tx,e2t(x)) lying in the fiber *F (x) of DbISwi(f). ® moves this point to the
point ((t+o(x))x,e2H(x)) = ((t+ o(x))x,e2m(t+o()f(x)/e2no(x)) =
((t + o(x))x,e2mi(t + o(g(x)) which is a point of the fiber M(x) of DbISwi(g).

11



Step 2. Swi(f) is homeomorphic to Swi(g).

Observe that Swi(f) = (UxexF+(x)) U ({«}xS1) where for each x € X, F+(x) is the
"fiber" { (tx,e2Mt(x)) : t € [0,%) } of Swi(f) which lies in ([0,9)x)xS1 C (C(X))xS1.
Similarly, Swl(g) = (Uxex9+(x)) U ({=0}xS1) where for each x € X, H+(x) is the "fiber"
{ (tx,e2mig(x)) : t € [0,%0) } of Swi(g) which lies in ([0,2)x)xS1. For x €X, since F+(x) C
F(x), then O(F+(x)) C ®(F (X)) C H(x); also H+(x) C M(x). We will describe a
homeomorphism ¥ of (3(X))xS1 which carries D(Swl(f)) onto Swi(g). ¥ combines a
vertical shift with a horizontal twist in a corkscrew motion which, for each x € X, carries .
Z3(x) onto itself and moves ®(*F+(x)) onto 79*(x). Also W restricts to the identity on a
neighborhood of {-e,00}xS1. (See Figure 4.)

Since X is compact, there is a b € (0,%0) such that o(X) C(-b,b). ltis easy to give

a formula for a map < : [-0,00]xX — [-e0,0] such that for eachx € X, t > ot X) : [-o0,00] =
[-00,%0] is an order preserving homeomorphism which restricts to the identity on

[-0.-b]U[b,*] and which carries o(x) to 0. (Thus, t(o(x).x) =0, and «(t,x) = tif |t| = b.)
Now define a homeomorphism ¥ of (3 (X))xS1 by W(tx,z) = (v(t,x)x,e2mi(x(t.x) ~12) for
(tx,2) € (Z(X))xS1. Clearly, W(tx,z) = (tx,2) for |t| = b; so W restricts to the identity on
{-00,9}xS1. For x €X, one easily computes that ¥ moves the typical point (tx,e2ig(x))
of J3(x) to the point (x(t,x)x,e2mr(tX)g(x)) which also belongs to H(x); so W(H(x)) = H(x).
Finally, for x € X, W(®(0x,f(x))) = ¥(o(x)xf(x)) = (0x,e2n(0 —o(X)f(x)) = (0x,f(x)/e2tio(x)) =
(0x.g(x)). Thus, Yo is an order preserving homeomorphism from ¥ (x) onto (x)
which carries the boundary point of F+(x) to the boundary point of J+(x).
Consequently, Wo(F+(x)) = M+(x). It follows that Wog(Swi(f)) = Swi(g). O

Proof of Theorem 2. f: XxS1 — S1 satisfies f(x,z) = z" where n = 0. Both Cyl(f)
and Swi(f) can be regarded as subsets of C(XxS1)xS1. We will describe a
homeomorphism @ of C(XxS1)xS1 which carries Cyi(f) onto Swi(f). ® achieves this
result by twisting in the S1-direction in the C(XxS1) factor of C(XxS1)xS1. For t(x,2) €
C(XxS1) and w €81, set ®(t(x,z),w) = (t(x,e"2MtNz), w) and D(cow) = (»,w). This clearly
defines a homeomorphism of C(XxS1)xS1. Let (x,z) €XxS1 and consider a typical point
(t(x,2).1(x,2)) = (t(x,z),z") of the fiber emanating from (x,z) in Cyi(f). Setz" = e-2nit/nz,
Then @(i(x,2).f(x,2)) = (t(x,e-2MVnz) zR) = (t(x,e-2nitinz) g2mit(g-2mitnz)n) —
(t(x,e-2mitiz) g2niti(x e-2Mitz)) = (1(x,2)),e2M(x,2")) which is a typical point of the fiber
F+(x,2) in Swi(f). It follows that @(Cyi(f)) = Swi(f). O

Corollaries 1 and 2 are obvious consequences of Theorems 1 and 2.
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Proof of Theorem 3. Recall that 7 : 9B3xS1 — S1 denotes the projection map.
Clearly Cyl(n) is homeomorphic to B3xS1. On the other hand, since n(x,z) = z, then by
Theorem 2, Cyl(n) is homeomorphic to Swi(r). Hence, we identify B3xS1 with Swi(m).

Recall that C+, Cp, -, Ck are disjoint 1-spheres in (3B3)xS1, and M4 =
(B3xST)U(H1UH2U--UH) where Hj is a 2-handle attached to B3xS! along Cj, for1<i<
k. Think of the 2-handie H; as the product of two 2-dimensional disks D;j and E; with dje
int(Dj) and &; € int(Ej) so that Hin(B3xS1) = (D)) xE; and C; = (D) x{ei}. (Thus, Dix{ej}is
the "core” and {dj}=E; is the "cocore” of H;.) Recall that n; = deg(n|C;). Set X =

Swl(:r[ C.)U(D,X{e.}) Then clearly X is homeomorphic to X(n1, n2, -, ng). (M4 and
e represented schematically in Figure 5.)

x;cx

It remains to describe a homeomorphism h : (9M4)x[0,0) — M4 — X. Note that
(B3x81) - X= Swl(n) Xis the union of the fibers of Swi(r) that emanate from the

k
points of (6B3xS1) — U Ci. Each of these fibers is homeomorphic to [0,20). We will

enlarge this fi benng to a fibering of all of M4 — X by copies of [0,9). Letx € aM4. If x
€ 9B3x81, then h({x}x[0,9)) is the fiber of Swi(m) emanating from x. If x ¢ 8B3xS1, then
X € (int(D9)*(0E;) for some i, 1 <i<k. If x € {d}x(FEy, then h({x}x[0,)) is the radius of
the disk {di}<E; joining the center point (di,e;) to x, minus the center point (di,e)). Ifx €

13



(int(Dy) — {di})x(3E;), then h{{x}x[0,)) is the union of a curved arc joining x to a point y &
(aD;)x(int(Ei) —{ei}) together with the fiber of Swi(ri) emanating from y. (See Figure 6.)

4 d

" , o) fibers

of MX \{{H

Figure 6

\

Proof of Corollary 3. Theorem 3 implies that M4 has a pseudo-spine
homeomorphic to X(1). Clearly X(1) is a disk. According to [3], X(1) can be "squeezed"
to an arcin int(M4). (Interpreted literally, [3] applies only in manifolds of dimension 3.
However, the methods of [3] work in manifolds of all dimensions = 3. This is fully

explained on page 95 of [2].) Thus, M4 has an arc pseudo-spine. O

4. Conjectures
The techniques and results about pseudo-spines of 4-manifolds presented here
are rather modest and restricted. Although at present we have no idea how to enlarge

the scope of these results, we are undaunted in formulating conjectures of much greater
breadth and boldness. ‘

Conjecture 1. If a compact 4-manifold with is homotopy equivalent to
X(n1, n2, -, n), then it has a pseudo-spine homeomorphic to X(n, ng, -, ny).
Conjecture 2. Every homotopy 4-ball has an arc pseudo-spine.

We break Conjecture 2 into two conjectures.

14



Conjecture 2A. Every PL homotopy 4-ball has a handlebody decomposition with
no 3- or 4-handles.

Conjecture 2B. ifa homotopy 4-ball has a handlebody decomposition with no 3-
or 4-handles, then it has an arc pseudo-spine.

Conjecture 3. If two compact 4-manifolds have arc pseudo-spines, then so does
their boundary-connected sum.

Conjecture 4. If a compact 4-manifold has a tree pseudo-spine, then it has an
arc pseudo-spine. :

Conjecture 5. If a compact 4-manifold has a pseudo-spine which is
homeomorphic to a 1-dimensional polyhedron, then is has a pseudo-spine which is
homeomorphic to a wedge of circles.

Conjecture 6. The 4-ball is the only homotopy 4-ball that has disjoint pseudo-
spines.

In connection with Conjecture 6, we note that in [4] it is shown that for n = 9,
there are homotopy n-balls distinct from the n-ball that have disjoint spines. Conjecture
6 asserts that the situation is different in dimension 4.
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MOST MANTIFOLDS ARE PL FIBRATORS

by

Robert J. Daverman

The title is intended to express a philosophy and isn't meant
to convey precise mathematical content. The philosophy emerged in
(D3], where the results suggest that manifolds in a fairly exten-
sive collection act as PL fibrators. Among closed, orientable 2-
manifolds the exceptions are known to consist only of the 2-sphere
and the torus. Among closed, orientable 3-manifolds, those having
either hyperbolic, Sol, or SL,(R) geometric structure were shown to
be PL fibrators, as were basically all those with infinite first
homology arising as connected sums of at least two nonsimply con-
nected manifolds. The chief result establishes that an aspherical,
virtualiy geometric 3-manifold is a PL fibrator if it is one in
codimension 2. The investigation uncovered methodology for treat-
ing‘a related matter involving limited codimension: any closed,
orientable manifold with (k-1)-connected compact universal cover is
a codimension k PL fibrator if it is one in codimension 2.

To explain, here is some notation and fundamental terminology:
M is a connected, orientable, PL (n+k) -manifold, B is a polyhe-
dron, and p:M - B is a PL map such that each p'b has the homo-
topy type of a closed, connected n-manifold. For a fixed orient-
able n-manifold N , such a PL map p:M - B is said to be N-like
if each p'b collapses to an n-complex homotopy equivalent to N.
Then N is a codimension k PL fibrator if, for every orientable
(n+k)-manifold M and N-like PLmap p:M -+ B, p is an approxi-
mate fibration; when it has this property for all k>0 , N is a
PL fibrator. Worth emphasizing, or admitting, is the fact that the
PL tameness feature required of an N-like map, the collapsibility
aspect, imposes significant homotopy-theoretic relationships bet-
ween N and preimages of links in B .

Remarkably, at this stage of development only two types of
manifolds are known not to be PL fibrators — those that already
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fail in codimension 2 and those that have a sphere as Cartesian
factor. The codimension 2 situation is fairly well understood (cf.
the Introduction to [D2]). It is a good locale for understanding
non-fibrators. The classic example is S!' , seen in any Seifert
fibration p:S!xB2 - B? with irregular (circle) fibers. Any
manifold N which regularly, cyclically covers itself fails to be
a codimension 2 fibrator by more or less the same construction, and
the 3-manifolds with Nil Geometric structure that are circle
bundles over the torus fail to be codimension 2 fibrators but do
not admit regular, cyclic self-coverings [D1]. The n-sphere fails
to be a codimension n+1 fibrator, as seen from a map S™xRet! o Retl
having as preimages S°x0 and all spheres of the form zx(r-s%) ,
r>0 ; this can be adjusted to a PL. S°"~like map.

Previous work describing PL fibrators typically required the
fundamental groups to contain no nontrivial, Abelian normal sub-
groups. One nice class of such-groups consists of nontrivial free
products. Not surprisingly, then, there are fairly strong results
yielding that nontrivial connected sums are PIL fibrators. Addi-
tional techniques became imperative for more extensive analysis of
3-manifolds, due to the desire to understand certain Seifert fiber
spaces, in which the fundamental groups contain infinite cyclic
normal subgroups.

Here are some other items of terminology. A proper map p:M
- B between locally compact ANR's is called an approximate
fibration if it satisfies a standard approximate homotopy lifting
property: given an open cover Q of B , an arbitrary space X ,
and two maps f:X - M and F:XxI - B such that pf = F, , there

exists a map F':XxI - M such that FJ = f and pF' is Q-close

to F (in the sense that to each zeXxI there corresponds U,
with {F(z),pF'(z)} C U, ).

A group T is hopfian if every epimorphism ¥:T' - I is an
automorphism, while it is cohopfian if every monomorphism &:T — T
is an automorphism. Two related concepts useful for sorting out
fibrator properties are: I is normally cohopfian if every mono-
morphism &:I' - I' with normal image is an automorphism, and T is
hyperhopfian if every homomorphism Y:T - T with (') normal and
T/Y(T) cyclic¢ is an automorphism.

17



STATEMENTS OF THE MAIN RESULTS

Let R denote the class of "non-bogus", closed, orientable 3-
manifolds, namely, the closed orientable ones that are virtually
geometric. A 3-manifold (without boundary, for our purposes) is
virtually geometric if it is finitely covered by a geometric one,
meaning that the covering space is a connected sum of 3-manifolds
which are either Haken or have some geometric structure. Recall
that a 3-manifold N is irreducible if every PL 2-sphere in N
bounds a 3-cell there, and a compact N is Haken if it is
irreducible and contains an incompressible (closed) surface.

Theorem 1. An aspherical 3-manifold N in %R is a PL
fibrator if and only if it is a codimension 2 PIL fibrator.

As a corollary, every aspherical 3-manifold N in %R which
is neither a Seifert fiber space nor a surface bundle over §!' is
a PL fibrator, as its fundamental group must be hyperhopfian,
indicating N is a codimension 2 fibrator [D2]. The same was
already known for 3-manifolds in %R expressed as a connected sum
of at least two nonsimply connected, irreducible 3-manifolds, one
of which has infinite fundamental group.

Theorem 2. Suppose N° has a closed (k-1)-connected univeral
cover (k>2) . Then N' is a codimension k PL fibrator if and only
if it is a codimension 2 fibrator.

TECHNIQUES
The following gives a basic method for detecting fibrators.

Lemma 1. If a closed, aspherical n-manifold N® is a
codimension 2 fibrator, and if =, (N*) is normally cohopfian and
has no Abelian normal subgroup A¥1 with n]aﬂ)]A isomorphic to
a normal subgroup of m;(N*), then N° is a PL fibrator.

A key step involves showing that an aspherical 3-manifold
which is a codimension 2 PL fibrator, unless it has Nil geometric
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structure, satisfies all the other hypotheses of Lemma 1. Most of
the effort to obtain the normally cohopfian property was provided
by Gonzdlez-Acufia and Whitten [GW], who improved upon an already
strong result due to Wang and Wu [WW].

Lemma 2 [GW]. If N® is a closed, virtually geometric 3-
manifold such that =,;(N%) is not cohopfian, then N°® is a Seifert
fiber space with one of the following geometric structures: &3,
S2xR , HR , or Nil .

Nil 3-manifolds contravene the pattern set by other Seifert
fibered spaces: they can be codimension 2 PL fibrators without
possessing normally cohopfian fundamental groups. The circle
bundle over the Klein bottle with fundamental group

G = <a,b,k|a'ka=k'=b'kb, k?=a?b®>

is a prime example, for one can check that a,b’,k? generate a
normal subgroup of G isomorphic to G , and therefore the asso-
ciated covering space is another copy of the source manifold. 1In
identical manner circle bundles over the torus regularly cover
themselves, but they are less interesting, since they never serve
as codimension 2 fibrators [D1].

The quotient of G by the normal subgroup in the example
above is 2,0z, . Direct sums of this type arise as subgroups of
the deck transformations associated with coverings stemming from
the failure of normal cohopficity and ultimately play an
instrumental role in the main result.

Lemma 3. If the closed 3-manifold N° has Nil geometric
structure, and if TI#¥1 is a group acting freely on N? such that
N’/T is homotopy equivalent to N? + then T contains a subgroup
of the form 2,82, and hence acts freely on no homology sphere.

See [Br, p 181] for the Smith theory about nonexistence of
such actions on homology spheres. The rest of the statement
depends upon uniqueness of the Seifert data for N3 [s2].
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With Nil manifolds Lemma 3 supplants the normal cohopficity
feature prevalent in most aspherical 3-manifolds for the proof of
Theorem 1, and with Haken 3-manifolds Lemma 5 supplants the non-
existence of Abelian normal subgroups feature which has proved so
useful in other settings. Before getting to the latter we mention
a result complementary to Lemma 3.

Lemma 4. If N' is a closed n-manifold and I is a finite
group that acts (PL) freely, preserving orientations, on both &k
and on N* such that the orbit space N°/I" is homotopy equivalent
to N, then N' fails to be a codimension k+1 (PL) fibrator.

The orbit space construction of [D3, Example 2B] shows how to
produce the required N"-like map.

Lemma 5. No k-manifold T , k23, satisfies all of the
following homotopy data: 7, (T) is infinite; T, (T) is free
Abelian of rank r , 1<r<wo ; and T;(T) = 0 for 2<i<k ; moreover,
there is no such T in the r=1 case unless m,(T) contains an
infinite cyclic subgroup of finite index.

With even k , this follows by comparing the homology data of
T' , the universal cover of T , with that of K(m,(T),2), naturally
computed in the Cartesian product of r copies of CP* ; with odd
k , one must also invoke results of Epstein about ends [Ep].

Finally, somewhat like Lemma 5 in Theorem 1, the result below
plays a major part in the proof of Theorem 2. The crucial ingre-
dient comes from [EM].

Lemma 6. If II is a finite Abelian group and I is a closed
k-manifold such that m,(3)=0 , =n,(2)=I1 , and m;(Z)=0 for 2<i<k ,
then II is trivial.

Question. Are there exceptions besides the 3-sphere to the
statement: a closed 3-manifold N3 is a PL fibrator if and only if
it is a codimension 2 fibrator? Within the class % this is open
for 3-manifolds covered by s? and for the ones arising as
connected sums of manifolds with nontrivial, finite fundamental
groups (other than exactly two summands, both with T, = 2;).
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Disks with Bad Boundaries

Paul Fabel

We investigate the topology of X, the space of self-homeomorphisms
of the 2-sphere which pointwise fix a non-separating continuum X.

We pose strategies for building a contraction of X that approximates X by
subspaces, which are known ﬁo be absolute retracts by a theorem of Mason.
If successful, we can then conclude by a theorem of Hanner that X

itself is an AR. It will then follow from theorems

of D.W. Henderson, and of Torunczyk and Dobrowolski that X

is homeomorphic to separable Hilbert space.

We remark on two important facets of our construction.

Given a closed disk D in the plane and distinct points a,b on the boundary
of D, we consider the the subset F of D consisting of those points x in D
which are not separated in D, from {a,b}, by any chord of D. We assert

that F is a closed arc, that F is continuous in the data, and that whenever

it’s meaningful, F is as short as possible.

Each closed disk in the plane can be canonically parameterized
by a conformal map of the unit disk.
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Negatively Curved Groups have the Convergence Property
Eric M. Freden *

ABSTRACT. It is known that the Cayley graph I of a negatively curved
(Gromov-hyperbolic) group G has a well-defined boundary at infinity OT.
Furthermore, O is compact and metrizable. In this paper I show that G acts
on OI' as a convergence group. This implies that if OI' ~ S, then G is

topologically conjugate to a cocompact Fuchsian group.

0. Introduction

The theory of convergence groups was first introduced by Gehring and Martin [GM]
as a natural generalization of Mobius groups. All discrete quasiconformal groups display
the convergence property and at first glance this fact would seem to imply a much larger
class of groups. However, the work of Tukia [T], Gabai [Ga], et al, shows that every
convergence group acting on S? is in fact conjugate to a MSbius group by a homeomorphism
of S (compare with 3.3 of [Gr]). Although this is false in the case of S2, all known
counterexamples share the same construction technique [MS]. }

This paper deals exclusively with discrete (in the compact-open topology) convergence
groups acting on metric spaces. Let (X,d) be such a metric space. In most of the literature,
X is either S™ or B™ although many results can be generalized. We say that G CHomeo(X)
is a convergence group if given any sequence {g,,} of distinct group elements, there exist
(not necessarily distinct) points z,y € X and a subsequence {gn} such that

gn(2) = z locally uniformly on X \ {y}, and
9. (2) =y locally uniformly on X \ {z}.

(Here “locally uniformly” means uniformly on compact subsets, i.e. if C C X \ {y} is
compact and U is a neighborhood of z, then g,(C) C U for all sufficiently large n.) Tukia
has termed the above criteria (CON) and I will do the same.

The idea of negatively curved groups is due to Gromov [Gr]. Other synonyms in
current use are Gromov hyperbolic, word hyperbolic or merely hyperbolic. The fact that
Gromov came up with a good idea has become evident in the last few years—the entire
research area of geometric group theory has exploded with the introduction of negative
curvature. All negatively curved groups are finitely presented. A nice argument showing
that negative curvature is a group invariant can be found in [Sw]. The word and conjugacy
problems can always be solved for negatively curved groups [C1] [Gr]. More recently Sela
[S] has announced that the isomorphism problem is also solvable in negatively curved
groups. Since negatively curved groups are in some sense generic [0], the unsolvability of
the above problems is the exception rather than the rule for finitely presented groups.

* This research was supported in ;;art by the Geometry Center, University of Minnesota, an STC funded
by the NSF, DOE, and Minnesota Technology, Inc; and by an NSF research grant; also by Brigham Young

University.
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This paper links negatively curved groups and convergence groups. Some results in
this area are already known. For instance, let M denote a closed riemannian n-manifold
with all sectional curvatures less than some negative constant. By Toponogov’s Comparison
Theorem [CE], the universal cover M has thin triangles. The group G = m;(M) acts by
isometry on both its Cayley graph I and M- ; hence they are quasi-isometric [C2] [GH].
Gromov has shown that quasi-isometry is a group invariant [Gr], therefore G is negatively
curved. Martin and Skora [MS] show that G also acts as a convergence group on the
boundary at infinity of M. The main theorem in this paper generalizes the above via
combinatorial methods. '

In section 1, I review definitions and some known results. Section 2 contains some
technical lemmas. The main theorem is proved in section 3 along with some related
material. The concluding pages provide drawings to accompany almost every combinatorial
result. (I find re-reading my own theorems almost impossible without the figures.) I
acknowledge with gratitude the encouragement of Jim Cannon. Eric Swenson developed
some of the techniques and groundwork used in section 1. Greg Conner, Dave Gabai, Steve
Humphries, Gaven Martin, and Bernard Maskit provided useful comments. I am indebted
to Brigham Young University for a stimulating research environment as well as for travel

support.
1. Preliminaries

Let (X,d) be a metric space, with a,b € X. A path connecting a and b is the image
of a continuous function a : [0,1] — X satisfying @(0) = a and a(1) = b. The length of
this path is defined by

n
length(a) = sup Z d(a(zi-1), a(z;))

i=1
where the supremum is taken over all finite partitions {0 ==z0,21,- - -zp =1} of [0,1]. X
is a path metric space if for any a,b € X there exists a path o connecting @ and b with
d(a, ) = length(a). Any such path realizing the distance between endpoints is referred
to as geodesic. If there is no ambiguity it is easier to denote a geodesic path between a
and b by ab. A ray is the image of a continuous map R : [0,00) — X. (It is convenient to
refer to both the map and its image as R, and to refer to R(t) merely as t if the context
is clear.) The ray R is geodesic if every finite sub-segment of R is geodesic, i.e. R is an
isometry onto its image. Geodesic lines are defined similarly.

Let (X,d) be a path metric space. A (geodesic) triangle A(a,d,¢) C X consists of
three distinct points a,b,c € X (called vertices) and three geodesic segments ab, bc, and
ac (called edges). It is not true in general that such a triangle is determined by its vertices
(consider X = §?).

Definition 1.1: Let § > 0. A path metric space (X,d) is negatively curved (6) or §
-hyperbolic if for each geodesic triangle A(a,b,¢) C X and for each z € ab it is true that

d(z,bc U @) < 6.
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The triangle A(a, b,¢) is said to be 6-thin.

In most of the literature the above inequality is not strict—however, several of the
lemmas proved below are shorter using strict inequality. It is easy to see that the two
definitions are equivalent.

The thin triangles condition has been attributed to Rips. There are many equivalent
definitions of negative curvature, for example, exponential divergence of rays [C2], an
inequality with respect to the “overlap” or generalized inner-product [Gr], and a linear
inequality relating area to perimeter [Gr]. Thin triangles seems to be the most intuitive of
the above and will be used in this paper. Let € > 0. Examples of negatively curved path
metric spaces are trees which have e-thin triangles and H™, hyperbolic n-space, which has

thin triangles with § = log(1 + v/2) + .
Ezercise 1.2: If X has thin triangles (§), then quadrilaterals are 24-thin.

Definition 1.3: Let G denote a group with finite generating set C, closed with respect
to inverses. Let I' = I'(G, C) denote the Cayley graph of G with respect to the given
generating set. This is a simplicial 1-complex with one vertex for each group element. The
directed edge set is E = {(h,c,hc): h € G,c € C} where h, hc represent the initial and
terminal vertices respectively, and ¢ is the label of the segment in between. ’

It is not hard to see that T is homogeneous—every vertex looks like every other
vertex. It is often convenient to pick a specific vertex as an origin. Usually this vertex
will be denoted as 0 and will correspond to the group identity. The group G acts on I' by
left multiplication. If h is a vertex, (A, ¢, hc) is a directed edge and g€ G, theng-h=gh
represents another vertex and g - (h, ¢, k) is the directed edge (gh, c,ghc). Depending on
the context, a word cic;....c; can represent
¢) a group element in G
it)  the vertex of T labelled ¢; C2....Ck
i) the edge path from 0 to the vertex in 21)

) an edge path from any vertex A to the vertex heics....ck.

Consider each edge as being isometric to the unit interval. In this way I" becomes a
locally compact path metric space. The distance function is referred to as the word metric.
A minimal representation for a group element k becomes a geodesic edge path from 0 to
h; relators correspond to closed loops in I'. By definition, @ acts on T' freely and properly
discontinuously as a group of isometries. For each generator ¢ € C, consider the set of
open half edges emanating from 0. The union of these edges, along with the vertex 0 forms
a fundamental domain D for the group action, as can be seen by checking the following
conditions: .

i) g(D)ND =0 for all g except the identity

i1) Every z € ' is G equivalent to a point in D

i21) The “sides” of D are paired by elements of G

w) I K CT is compact, g(D)N K = § except for finitely many g € @

Evidently I'/G is a bouquet of circles, with one circle for each generator. Any compact
subset of I is contained in the union of finitely many edges and vertices. Bearing this in
mind, the following is immediate.
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Ezercise 1.4: If V,W C T are compact sets, then g(V) N W = { for all but finitely many
g€G.

Call a metric space proper if the closure of every metric ball is compact (i.e. the
Heine-Borel theorem holds).

Definition 1.5: A finitely generated group G is negatively curved, or word hyperbolic if
the corresponding Cayley graph I' is negatively curved.

Definition 1.6: Let (X,d) be a proper path metric space with §-thin triangles for some
fixed § > 0. Two geodesic rays R, S : [0, +00) — X are equivalent, written R ~ S, if

limsup d(R(%), S(t)) < +o0.
t—+4o00

Another way to say this is that R strays at most a bounded distance from S and vice
versa. Indicate by [R] the equivalence class containing R.

Ezercise 1.7. In fa,ct the bounded distance mentloned above is (asymptotically) at most
26. (Hint: qua.dnlatera.ls are 26-thin.)

One might worry about rays that start at different places. In fact, this is usually not
a problem. Given any ray R and point z € X there is a ray S starting from z that is
equivalent to R (see 1.2 of [Sw]). Therefore if z and y are distinct points of X, there is a
bijection between the set of ray classes starting at £ and those starting at y.

Definition 1.8: The boundary at infinity 0X is defined as the set of equivalence classes
of (geodesic) rays.

It is necessary to put a topology on 0X that is independent of ray base points. The
following is a generalization of classical hyperbolic geometry.

Definition 1.9: If R is a ray in X (or more generally any closed set) and z € X, define
a relation (multi-valued “function”) by

pr(z) = {r € R:d(z,r) =d(z,R)}.

The set pr(z) is called the closest point projection of z into R.

Observe that if p € pr(z) and ¢t € Tp then p € pr(t) also. In the special case X =T,
a negatively curved Cayley graph, if z is a point and R a geodesic (segment, ray, line)
there can be at most finitely many points (all necessarily vertices) in pg(z). Furthermore,
Pr is a “continuous” relation, in the sense that if z is sufficiently close to y, then pg(z) is
in a neighborhood of pr(y). :

Definition 1.10: Let R be a ray and r € R. Define the halfspace determined by R and r
as -

H(R,r) = {m € X : d(z, R[r, +o0)) < d(z, R[0, 7))}
Set H~(R,r) = X \ H(R,r). Call H™(R,r) the complementary halfspace.
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A point is in H~(R,r) if all of its projections into R lie in the intial segment R[0, 7).
If at least one of its closest projections lies in the subray R|[r,+o0), then the point is in
H(R,r). Although a halfspace and its complement are defined differently, they are almost
indistinguishable in the large. Any theorem proved about halfspaces is true (or has an
analog) for complementary halfspaces. The halfspaces yield neighborhoods for X in the

following way.

Definition 1.11: Given a halfspace H(R,r), define an (open) disk at infinity by

D(R,r) = {[S]: S is a ray, and 1;21_*1_1;5 d(S(s), H (R,r)) = +0o0}.

Let D~(R,r) signify X \ D(R,r).

Swenson [Sw] gives a nice argument showing that the disks at infinity form a base
for the same topology on 8X used by Gromov, et al, and verifies independently that 0X
is compact, metrizable, and finite dimensional. The compactification X = X U 8X can
be given a global metric which induces the original topology on X and agrees with that
of 8X. 1 prefer, however, to ignore the global metric in favor of combinatorial arguments
dealing with halfspaces and disks. This is particularly relevant in the case that X is the
Cayley graph I' of a negatively curved group.

2. Some Geometric Properties of I

Let G be a negatively curved group with fixed (finite) generating set C' and associated
Cayley graph I'. One can define an extension of the action of G to OI' in the obvious way:
if R C T is a (geodesic) ray, set g([R]) = [g(R)]. Suppose that S is another ray equivalent
to R. Then by definition there exists N € ZT such that for all r € R and all s € S, both
d(r,S) < N and d(s,R) < N. But every g € G is an isometry on T', so d(g(r),g(S)) < N
and d(g(s),g(R)) < N. Therefore g(R) and ¢(S) are equivalent rays, meaning that the
action on OI is well-defined.

In light of the above, one may dispense with equivalence classes of rays and use
individual representatives. Since G is a group, it follows that g : 0I' — OI is a bijection.
To show that G acts as a group of homeomorphisms, it suffices to show that each ¢!
is continuous on OI'. Observe that ¢ maps halfspaces to halfspaces, hence basic disk
neighborhoods to basic disk neighborhoods. Thus ¢ is an open map, so ¢~ ! is continuous.

Definition 2.1 : A negatively curved group is elementary if O' contains at most two
points. It is non-elementary otherwise.

Elementary groups are either torsion or virtually cyclic depending on whether oI is
empty or contains exactly two points (see, e.g. the discussion following I1.17 in [Sw]). On
the other hand, any non-elementary negatively curved group G contains a rank two free
subgroup, and hence T is in fact uncountable (see 8.2 of [Gr]). In the non-elementary case,
G is a discrete subgroup of Homeo(dI') using the compact-open topology. The argument
is a transparent consequence of the convergence conditions (CON) which are established
in the proof of theorem 3.4. The action of G on II' is not necessarily effective (meaning
nonidentity elements can act trivially). Let H be the subgroup of G that acts trivially
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on OT'. Clearly H is normal, and (CON) shows that H must be finite. The quotient
Go = G/H acts effectively.

The next four properties are generalizations of hyperbolic geometry applied to I'. The
first result is “folklore”. It says that there is a (not necessarily unique) geodesic between
every two points at infinity.

Lemma 2.2. If R,S C T are inequivalent rays, then there is a geodesic line P: R —» R
such that P~ = P(—o0,0] is equivalent to R and Pt = P[0, 4+00) is equivalent to S.

Proof: We may assume that R and S both emanate from the origin of I. Parametrize
the rays by arc length. For each n € Z% let r,, (resp. s,) denote the point on R (resp. S )
with d(0,7,) =n (resp. d(0, s,) = n). Let P, be the geodesic segment joining r, and sp.
Since R and S diverge (exponentially) there is an N for which I(P,) > 26 whenever n > N.
By passing to a subsequence if necessary and relabeling we may assume that I(P;) > 26
and the lengths of the P, are strictly increasing as n — co.

For each n in our index set (which is no longer all of Z*), there is a point p, € P,
such that both d(p,, R) < § and d(p.,S) < 6. (Reason : Set Prr = {p € P, : d(p, R) < 6}
and Pps = {p € P, : d(p,S) < 6}. Using the §-thin triangle with vertices r,0sy,, every
p € P, is in at least one of the above sets. Thus the connected set P, is the union of the
closed sets P, and P,s. They cannot be disjoint.) Let r}, € pr(p») and s/, € ps(p,). By
the triangle inequality, d(r},,s},) < 26. Using the (exponential) divergence of rays there
are (bounded) initial segments R’ and S’ of R and S such that d(R\ R, 5\ ") > 26,
i.e. the points r;, and s}, lie in R' U S’ for all n. If d is the diameter of R' U S’ then
d(07 Pn) Sd(ov T;)-Fd(r:z,pn) < d+ 6.

The above paragraph shows that each P, meets the open ball around zero of radius
d+ 6. In fact each P, has a vertex in the closed ball of radius d+ 6 + 1. Using the pigeon-
hole principle, infinitely many P, share a common vertex v. Pass to a further subsequence
so that each P, passes through v. Now consider the sphere about v of radius 1. There will
be at least two vertices on the sphere which intersect infinitely many of the P,. Pass to
the corresponding subsequence P,;. Repeat the process for the sphere about v of radius
k=2,3,4,- -, to obtain further subsequences P,. Set P = (), | Prx-

By construction P is geodesic: if a and b are points of P then they lie on the geodesic
segment P, for some n. Also P is unbounded. Finally P7 is in the 26-corridor about S:
Let y € P*. Then y € P} for some n. If d(y,s,) < 6§ we're done, so suppose not. By the
thin triangle s,vs},, either d(y,S) < § or d(y,vs) < §. In the latter case

d(y,5) < d(y,sy) < d(y,vs,) +d(v,sp,) <&+ 6 =26,

Similarly P~ ~ R. 1

Definition 2.3: Recall that a subset S of a path metric space is quasiconvez (K) for some
K 2-0, if every geodesic segment o with a(0),a(1) € S satisfies sup;¢p4; d(a(2), ) < K.

Lemma 2.4. Let R C T be aray andr € R. If a,b € H(R,r) and ¢ € ab, then
d(c, H(R,r)) < 26. (Half-spaces and complements of half-spaces are quasiconvex (26) .)
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Proof : Let p € pr(b) and ¢ € pr(a). Consider the (26-thin) quadrilateral abpg.
The point ¢ must be within 2§ of bp Upg U 7@, and all of these segments lie in H(R,r). A

similar argument shows that H~(R,r) is also quasiconvex (26). i

Lemma 2.5. Let R be aray, r = R(r) a point on R, and k a positive real number. Then
the distance from H™(R,r) to H(R,r + ké) exceeds (k — 12)é. (Halfspaces are “thick”.)

Proof : We may assume that k£ > 12. Let a € H~(R,r) and b € H(R,r+k§). Choose
closest point prOJectlons P € pr(a), and ¢ € pg(b) with the latter inside H(R,r + k6). Set
p' = R(p +46) and ¢' = R(g — 46).

CLAIM: d(p’',ap) > 26. If not, there exists a point ¢ € ap with d(%,p') < 26. Since
P € Pr(?) (see remarks following 1.9), it follows that d(¢,p) <d(¢,p') < 26. But then the

triangle inequality says

46 = d(p,p') < d(p,t) + d(¢,p') < 26 + 26 = 46

which is most certainly a contradiction. Therefore the claim holds.

By exactly the same argument, each of d(p’ ,bq), d(q',bg), and d(¢',ap) is at least
26. Using thin quadrilaterals (exercxse 1. 2) both p',¢' are within 2§ of ab. Let a',b' be
respective closest point projections of p', ¢' into ab. Then

k6 < d(p,q) =46 +d(p',q") + 46
<46+26+d(a',b')+ 25 +46
< 46 426+ d(a,b) + 26 + 46
= 126 + d(a, b).

The conclusion follows. [
The statement and argument of lemma 2.4 need to be modified when the two endpoints

are at infinity.
Lemma 2.6. f RCT'isaray,r € Rand L C T is a (geodesic) line with endpoints
L(+o0) and L(—o0) both inside D(R,r + 146), then L C H(R,r).

Proof : By hypothesis, there exist sub-rays Lt and L~ of L entirely contained in
H(R,r+146). Let a € Lt and b € L™ Then ab (the segment of L between a and b) stays
within 26 of H(R,r + 146) by quasiconvexity. Lemma 2.5 implies that H(R,r 4 146) is

more than 26 from H~(R,r) and the result follows. M

The last result of this section is proved by a straightforward 26-thin quadrilaterals
argument (see I.12 of [Sw]).

Egercise 2.7 Let X be negatively curved and R C X aray. If r = R(r) € R and
p € H(R,r + 86),then d(p, R) <d(p, H~(R,T)) + 46. .

3. Convergence and the Main Theorem

The boundary 90X of a negatively curved space X was originally defined in terms of
sequences of points in X convergent at infinity (see 1.8 of [Gr]). Here is a very intuitive
definition of the latter phrase. :
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Definition 3.1: Let X be a negatively curved space, {an} C X a sequence, and R C X
a (geodesic) ray. Define a, — [R] to mean: given any r(= R(r)) there exists a positive
integer N such that a, € H(R,r) for all n > N.

The pointwise convergence at infinity of a sequence of functions {f,} on X now makes
sense. (Since OX is a metric space, one needs no special definition of convergence for a
sequence of points in 8X.) Uniform convergence at infinity is defined similarly:

Definition 3.2: Let S C X, {f.} a sequence of functions each mapping X into X, and
R C X aray. Define fn(z) — [R] uniformly on S to mean: given any r(= R(r)) there
exists a positive integer N such that f,(S) C H(R,r) for all n > N.

Theorem 3.3. Let R C T be a ray based at 0, and {gn} a sequence of distinct group
elements. If gm(20) — w = [R] for some point zo € T, then gm(z) — w for all z € T.
Furthermore, the convergence is uniform on compact subsets of T.

Proof : Let € > 0 and let B denote the open ball with center z; and radius e.
Let » € R and choose N > % + 8. By hypothesis there is some M > 0 such that
W = gm(20) € H(R,r + N§) for all m > M. Set R* = R[r + N&§) as the sub-ray of R
from r + N6 onward. There are two possibilities.

CASE 1:d(wm,R*)>46+¢ (The distance from w,, to R is “large”).
We know wn, € H(R,r + N§) C H(R,r + 85). Using 2.7 we have

d(Wm, R) — 46 < d(wm, H~(R,T)), so
€= (46 +¢€) — 46 < d(wm, R) — 46 < d(wm, H~(R,1)).

Therefore gm(B) = B(wm,€) C H(R,r).

CASE 2: d(wm,R*) < 4§+ ¢ (The distance from wy, to Rt is “small”).
In this case, gm(B) is in the 48 + 2¢ neighborhood of R*. Let z € gm(B), so d(z, R*) <
46 + 2¢e. Suppose that z ¢ H(R,r). Then z must be closer to the segment Or than to Rt
in particular d(z,0r) < 46 + 2¢. Then ' :

Né =d(0r, R*) < d(0r, 2) + d(z, RT) < (46 + 2€) + (46 + 2¢) = 86 + 4e,

contradicting our choice of N > % + 8. Thus z must be in H(R,r) and hence gm(B) C
H(R,r).

Set Z = {2z € I : gm(z) — [R]}. By the above, Z is open. But Z is also closed:
If {z;} C Z with 2; — 2, then for large i, z € B(z;,p) for some fixed p > 0. By the
previous paragraph, z € Z, meaning Z = I". Uniform convergence on closed balls (hence

on compact sets) is immediate. [ ‘

Theorem 3.4. G acts as a convergence group on 9T (compare with 8.1.G of [Gr)).

Proof : Suppose G is elementary. If OT' = () then the theorem is vacuously true. If
OI" consists of two points, then every ¢ € G either fixes or interchanges these points, and
again the theorem is vacuously true. Assume that G is non-elementary.
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Let {gm} be a sequence of distinct group elements and pick any vertex 0 as an origin.
Without loss of generality we may assume that 0 € I corresponds to the identity of G
so that g,(0) = gm - ¢d = gm, and that each g, is a minimal representative as a word
in the generating set of G. From a geometric viewpoint this means that g, regarded as
an edge path from 0 is a geodesic segment. By passing to a subsequence if necessary, we
may suppose that d(0,gm) > 2m + 1 for each m € Z+. Let S; be the (finite) set of edges
having 0 as a vertex. It is evident that infinitely many of the edge paths g, pass through
some edge s; € S;. Pass to this corresponding subsequence {g; m}, and pick out and save
a shortest element h; from this subsequence.

Let v; denote the other vertex of s;. Let S; be the collection of edges having v; as
a vertex. Infinitely many of the edge paths g; ., pass through some edge s; € S; other
than s;. Let v; denote the other vertex of s; and pass to the corresponding subsequence
{g92,m}. Pick out and save a shortest word h» (distinct from &, ) from this new subsequence.
Proceed recursively to obtain an edge path S = 515253 - -- and a diagonal subsequence {%;}
of the original sequence. By construction, each path 0h; has an initial segment lyingon S
of length at least i.

Note that S, being a limit of geodesic segments, is a geodesic ray with initial point 0.
Let s € S. Then for large 7, a shortest path from the vertex h; = k;(0) to 0 passes thru
s. This implies that h; € H(S, s) for all sufficiently large :, i.e. h;(0) — [S]. Repeat the
above construction with respect to the sequence {A;'} to obtain a geodesic ray T, and
subsequence {g,} such that g;1(0) — [T].

The strategy is to show that given any half-spaces H(S,s) and H(T,t) about S, T
respectively, we can find an N such that g,(H~(T,t)) C H(S,s) for all n > N. Since for
any neighborhood U of [S] and compact K C 8T'\ [T] we can find s and ¢ far enough from
0 so that K € D™(T,t) and D(S,s) C U, the above sentence implies g, — [S] uniformly
on K. Similarly, g;! — [T7] locally uniformly on 8T \ [S], establishing (CON).

We know that each g, as a word (edge path) consists of an initial string s, C S of
length n and that s, is the initial part of s,41. Similarly g, has initial string ¢, C T of
length n. Since the length of g, is at least 2n + 1 we know the end of s, does not involve
the start of ¢71, ie. g, = SnWytyt, where w, is some word of length at least one. Now
observe that s,w,t;! is a geodesic path implies that the segment 3,0, = 5,(0)g,(0) lies
inside H(S, sp).

Let s € S. Choose N large enough so that both sy > s + 136 and ty > ¢t + 156. Let
z € H™(T,t) and suppose by way of contradiction that g,(z) € H(S,s) for some n > N.
Let ¢ € ps(gn(z)) and consider the triangle g,(0)ggn(z). By choice of n, we know that
d(sn,q) > 136. Using thickness of half-spaces (lemma 2.5) d(sn,qgn(z)) > §. Therefore
thin triangles says that

d(sn,9n(0)gn(2)) = d(g7 " (s2),02) = d(tnw;*,02) < 6.

However, the vertex t,w;! lies in the half-space H(T,t,) C H(T,t + 156). Using
thickness of half-spaces, the distance from H(T,t,) to H~(T,t) is more than 36. Finally,
since H~(T,t) is quasiconvex (lemma 2.4), we know that the path 0z strays at most 26

from H=(T,t). Hence
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36 < d(tpw; ', H™(T,1)) < d(taw;,0z) + 26 < § + 26 = 36, a contradiction.

Therefore g,(2) € H(S,s) after all, and since z was arbitrary, g, maps all of H~(T,1) into
H(S,s) as required.

Recall that if G is a convergence group on a space Y, then the limit set A(G) consists
of all points y € Y such that there exists z € ¥ and a distinct sequence {g,} C G such
that gn(z) — y. The ordinary set Q(G) is the complement of the limit set. Since any
proper compact subset of I' U 9T is contained in some suitably large halfspace (along with
the corresponding disk at infinity), the proof of 3.4 yields

Corollary 3.5. G acts as a convergence group on ' = I' U 0I', with Q(G) = T' and
Ae)=or. I -

Gehring and Martin [GM] classify elements of convergence groups (acting on S™) as
elliptic, parabolic, or lozodromic. Elliptic elements are torsion, parabolics have a unique
fixed point on 5™, and loxodromics have two fixed points on S™. Similarly (see 8.1 of [Gr]),
Gromov classifies the elements of any negatively curved group as either elliptic (=torsion)
or hyperbolic (=non-torsion). He shows that a hyperbolic element has two fixed points
on IT', one being attractive and the other repulsive. In light of 3.4 it is clear (at least
whenever OI' = S™) that if G is negatively curved then g € G is hyperbolic if and only if
g is loxodromic. I will use the term “loxodromic” exclusively hereafter.

Definition 3.6: Let G be a (discrete) convergence group acting on a compact metric space
(X,d). We say that the limit point w is a point of approzimation if there is associated
with w a sequence {gn } of distinct group elements such that for each z € X \ {w} there
is some € = ¢() satisfying d(gm(w), gm(z)) > € for all m.

As an example, let G be a Kleinian group and g € G a loxodromic element. The fixed
points of g on S? are both points of approximation. On the other hand, no parabolic fixed
point can be a point of approximation [Ma]. Evidently, every loxodromic fixed point (in
the boundary at infinity) of a negatively curved group is a point of approximation. In fact
more is true.

Theorem 3.7. Let G be a negatively curved group. Then every z € OI' is a point of
approximation (compare with 8.2.J in [Gr]).

Proof : Let z,y € 9T be distinct points and let L be any geodesic line with L(+o00) =
z and L(—o0) = y. Pick a vertex on L, call it vy. Let LT denote that part of L between vg
and z. Label the succesive vertices of L from vy tending towards z-as vy, va, vg, ---. For
each m, let g, € G be the group element taking v, to ve. Use the convergence property
to obtain a subsequence {gx} and rays S and T such that

gr — [S] locally uniformly on 8I'\ [T] and
gz ' — [T] locally uniformly on T\ [S].
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We can pass to a further subsequence so that {g;([T])} converges as well. Since
g}‘l(vo) — [L™] by construction, it is clear that both T and L™ represent the point z € AT
Because y € OI" was chosen to be distinct from z = [T] we know that g;(y) — [S]. Suppose
for the moment that g;([T]) — [S] also. Pick s € S so that vg ¢ H(S,s). Then for all
sufficiently large j it is true that both g;(z) = ¢;([T]) and g;(y) are inside D(S, s + 146).
Lemma 2.6 implies that the geodesic g;(L) is contained in H(S,s). But then

vo = g;(v;) € g;(L) C H(S,s), a contradiction.

Therefore g;(x) cannot converge to [S]. Since gj(w) — [S] for all w # =, it is clear that
is a point of approximation.
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Some of Daverman’s Wild Strongly Homogeneous Cantor Sets are Slippery

Craig R. Guilbault

Abstract. Problem #7 from the Proceedings of the 1986 Western
Workshop in Geometric Topology asks whether the Daverman wild
. Cantor sets are slippery. We apply recent results on spines of

compact contractible manifolds to show that in many cases the

answer is yes.

1. Background

If M" is a PL manif old, A is a polyhedron contained in int(M"), and M"
collapses to A; we say A is a PL spine of M". The f ollowing questions about a

class of compact contractible 4-manifolds constructed by B. Mazur [Ma] remain

open.

Question 1. Do any Mazur 4-manifolds contain a pair of disjoint spines?

Question 2. Do all Mazur 4-manifolds contain a pair of disjoint spines?

In [Gu]l the high dimensional analogs of these questions are addressed. It is
shown that there is a class of compact contractible manifolds in dimensions =9
which are not homeomorphic to a ball and which contain disjoint pairs of
spines. In particular, it is shown that if a compact contractible n-manifold
M" may be realized as S"-ini(N), where N is a regular neighborhood an acyclic
k-complex in S" with 4k<n, then M" contains dis joint spines. Since a compact
contractible n-manifold of dimension at least 4 is uniquely determined by its
boundary, this is equivalent to requiring that aM" be homeomorphic to N where
again N is the regular neighborhood of an acyclic k-complex in S" with 4k<n.

At least part of the interest in these questions stems from possible
“connections to embeddirig theory. For example, there is belief that a
sufficient understanding of these spines might yield an answer to the
following long standing question from embedding theory.
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Question 3. 4dre all Cantor sets in S" slippery?

A set K c S" is slippery if for any £>0, there exists an €-homeomorphism

h: Sn-.asn with h(K)nK = @. It is known that for n=3 all Cantor sets in S® are

slippery. A
In [Dal], Daverman constructed an interesting collection of Cantor sets in

s” » Which by virtue of their extreme wildness, are considered likely

candidates for counterexamples to Question 3--if any counterexample exists. In

[Gu], it is stated without proof that some of Daverman’s wild Cantor sets are

slippery. Here we provide the details to this observation.

2. The Daverman Construction

Let M™ 2 be a compact acyclic (i.e. having the homology of a point) but
not simply connected (n-2)-manifold containing a PL spine X’ of dimension k=
n-3. Let N*' = M"?x [-1,1] and X = X’'x{0}. Then define Q" = N"x [-2,2] and
let G be the upper semicontinuous decomposition of Q" having {Xx{c}|ceC} as
its collection of nondegenerate elements, where C denotes the standard: ‘middle
thirds Cantors set in [0,1] < [-2,2]. Let Qq'E denote the decomposition space
Q/G and m: Q—)Q* the decomposition map. Notice that, since X is not simply
connected, our decomposition is not cell-like. Nevertheless, Qi‘P is a finite
dimensional homology manifold which, by [BL] (or more recent generalizations),
admits a cell-like resolution. (As an exercise, produce this resolution
explicitly.) By verifying the disjoint disks property and applying [CBL] or
[Ed] one may conclude that Q"E is an n-manifold. This argument may be found in
[Da]. Additionally, note that Q"E is contractible--again see [Dal. Let K c Q*
denote the image of the nondegeneracy set of w. Since 3Q = BQ* we may form the
- manifold Qan”E which is easily seen to be a homotopy n-sphere--hence,
homeomorphic to S" by the Generalized Poincaré Conjecture. Now, K c Q"i c s"is

a Daverman wild Cantor set.
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3. Slippery Wild Cantor Sets

We say that a Cantor set K ¢ S" is "of type 6" if K = r\Ni where each Ni
is a disjoint union of finitely many compact contractible n-manifolds and
Ni+1c int(Ni) for each i. If this defining sequence can be chosen so that each
of the compact contractible n-manifolds used contains a pair of disjoint
spines, we say that K is of type i?d. For example, since a tame Cantor set in

S" can be defined as a nested intersection of n-balls, it is of type i‘.«?d.
PROPOSITION 1. If a Cantor set K c S" is of type i‘o’d then K is slippery.

Proof. Write K = r\Ni where each N, = Mi UMi u- . 'UMi (a finite disjoint union
1
1 2 k
of compact contractible n-manifolds containing disjoint pairs of spines), and

le >0. Choose

L1 PR

ufficiently large that each Vi has diameter <e. Observe

o~
]
[
=

- J
that there is a homeomorhpism hi : Mi -)Mi which fixes aMi and moves KnMi
J h] J J b
off itself. Indeed, since KnMi c int( Mi ) we may apply the techniques of Lemma

J J
2.3 of [Gu] to obtain a spine A of Mi disjoint from KnMi. Then use the

J J
collar structure on Mi—A to "slide Kr\Mi off itself". This is the desired hi .
J J J
Define h: S™»S" to be h on M  and the identity on S-N. Clearly, h is an
J J

€-homeomorphism and h(K)nK = @. o
PROPOSITION 2. Each Daverman wild Cantor set is of type €.

Proof. Using the notation established in §1, consider Q" = N -lx[ -2,2]. If
8=1/9 then [-§,1/3 + &] u [2/3 - §,1+8] contains the middle thirds Cantor set
and N"'x[-5,1/3 + 8] and N"x[2/3 - &,1+5] are dis joint copies of Q" whose
union contains G. Let Qo and Ql be slightly shrunken copies of these two sets
so that QOUQICint(Q). Notice that the pairs ( QO,GIQO). and (Qo’GIQ1) afe
equivalent to (Q",G), hence Q; = nu( Qo) and Q: = u( 01) are each compact
) contractible n-manifolds homeomorphic to Q*. Iterating this process allows us
to write K as nNi where N1= Q*, N2= Q: U Q:, and in general Ni is a disjoint
union of copies of Q*. o
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PROPOSITION 3. Some Daverman wild Cantor sets are of type i?d. Hence, they

are slippery.

Proof. By Proposition 1 and the proof of Proposition 2, we need only to
identify a Daverman wild Cantor set K ¢ S” for which the associated compact
contractible n-manifold Q“P contains a disjoint pair of spines. By [Gu] (see
earlier remarks), it suffices to find a Q”i such that c‘iQ"E is realizable as the
boundary of the regular neighborhood of an acyclic k-complex in S" (4k<n).
This is often the case. For example, one may begin the construction described
in 81 by choosing M™% to be a regular neighborhood of such a k-complex L
embedded in S™° Now the canonical inclusion of S” 2 into S® yields an

embedding of L into S" with regular neighborhood homeomorphic to M" -le,z which

is homeomorphic to Q"; and which, by consfruction, has boundary homeomorphic

Y
toQ. o
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Graphing Inverse Limits of Interval Maps
Richard M. Schori
Oregon State University
October 4, 1994

I. Introduction
Our goal is to graph approximations to the inverse limits of certain classes of

unimodal (one critical point) and bimodal (two critical points) maps on the closed
interval I.

We first show how to represent an inverse sequence in a more geometric way as a
sequence of graphs and projection maps and then for certain classes of maps we will
show how to embed these graphs in the plane in such a way that the graphs will
approximate the inverse limits in the sense that the embeddings in the plane will
converge in the Hausdorff metric to an embedding of the inverse limit. This will
provide the framework for a method for approximating the inverse limit with computer
graphics. ‘

The techniques use algorithms on kneading sequences of pre-critical points of f.
The author has code written in SCHEME, a dialect of LISP, that does the appropriate
computations and then draws, on demand, the graph of different stages of the
approximation.

This is a short version of a longer paper [S] that has all the technical details. I
want to thank Joe Christy, Beverly Diamond, and Ethan Coven for help and
encouragement.

Karen Brucks and Beverly Diamond [BD] have a fine contribution to this theory
which apparently is more theoretical than the work here but has more restrictions in the

computer applications.

II. Preliminary Definitions
If £:1-1 is a continuous function on the closed unit interval, then
{ { f
I~ &~1 &~ ..
is the inverse sequence of { with associated inverse limit space inv(l,f) defined by
inv(I, f) = { x = (%0, X, X3, ... ) : Xp €1 and i(x,)=%,_; for n>1}

with metric d given by
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d(li.v z) =

n

X |Xp—¥n
Z_—:o 2"

We are going to replace the above usual definition with an equivalent but more
geometric version. Let

Gn = {(w), B Ll@), ..., fx), %) 1 x €I},
define ap: I — Gy by

an(x) = (), ..., {(x), x),

and let pp:Gp—G_; be the projection

pn(fP(x), ..., {(x), x) = (fF(x), ..., {(x)).

Thus Gp is a graph in (n+1)-space, ap is a homeomorphism, and pp is a

projection map that mimicks the action of f. We have

[E - 35 I AN O AN SPE
lag  lay lapy  la,
Go2G 2. G 2rGy—-
where ppoap=a, _jof. Thus, we have an induced map
&:1nv(L,{) — inv(Gp_pp)

which is a homeomorphism. See Fig. 1 to illustrate p; and p, for m=2.

fox
X — Fi 'ﬁ'x)
o I %
e X : +ix)

Fig. 1

It is the inverse sequence of the (Gp, pp) that we regard as a more geometric
version of the original inverse sequence of the (I, ).
In summary, we construction subsets Dy c%? homeomorphisms gp:Gp—Dp ,
and maps ap:Dn—Dy_;, asin the diagram below, so that a homeomorphism
B:i0v(Gp, Pn) —inv(Da, an)
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is induced,
Go2G 2. G B Gy — - inv(Gy, pp)
18 18, 1,3,,- 18, L5
D, 3D, .. D, 1_. " Dy — --- inv(Dp, qq)

‘and the maps qp are so defined that the sets Dp converge in the Hausdorff metric to a

set D CR* that is homeomorphic to inv(I, f).

II. The Tent Map Family

Here we outline the constructions for the tent map family which illustrates our
techniques. All the following definitions depend on. m and it is understood that they

are all defined for a fixed m. Define

mx, f0< x<.5
)=
m(l-x),if.5<x<1

and for writing code, define

fl(x) =&
which is the inverse function of f|[0,.5]. This gives us a method for finding the set
£ (x) = 17({x}) = {f1(x), 1 = f1(x)}, in case 0 < x < £(.5).

Lemma 1. Turning points of Gp = ap(critical points of %)
Let C(n) = critical points of 2.

Itineraries and Kneading Sequences.
For f:I-I and p €1, let the itinerary of p,
) 3(p) = MoM;M,---
L, iffi(p)<.5
where M, ={ R, iff}{p)>.5
C, if f1 P)= 5

Define the restricted itenerary of pel, denoted k(p), to be the itinerary of p if C
does not occur, but if it does occur, stop after the C. For example, when m =2 ,
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k(.25) =LC, k(.5)=C, k(.75) = RC, and k(.125) = LLC.

Let K(n) = {k(p):p € C(n)}. and note that the map
k:C(n)—K(n)

1s 1-1. The inverse map
e:K(n)—C(n)

can also be easily defined. For example, e(LC)=.25. Now, let

KNEAD(n) = kneading sequences of ordered critical values of fZ.
Then KNEAD(n) is the desired symbolic representation for the turning points of Gp
and will be used to develop algarithms for embedding Gy in the plane.

Example, for m =2, n=2,

C(2)={.25. .5, .75} and KNEAD(2)={LC, C, RC}.
Now let L% = all finite L-R sequences.

CONVERTING L-R SEQUENCES TO REALS.

We need to embed the finite L-R sequences.in the plane; as a composition of
three mapé. The conversion of L-R sequences to 0-1 sequences is automatic using the
rule L—0 and R—1. We name this map (LR-to-SKEW).

Convert skew code to binary code with the map (SKEW-to-BINARY) which takes
aj---ap — by---by  where b ija (mod 2).
Now convert binary code to reals with the map (BINARY-to-REAL) which takes

n-—lQ_bi b,

by ---bp, — .
1 n 1:—2_1 3: 3n—1

Our final map r: £% — [0, 1] is the composition
r= (BINARY-to-REAL) o (SKEW-to-BINARY) o (LR-to-SKEW).

Hlustrating the Embedding Algorithm.

We will discuss the example where m=2. Here, KNEAD(1)=(C) says that
the only turning point of G; is a;(e(C)) = (f(.5) .5). In this case, G is just the graph
of f, G(f'). We want to find the symbolizm that will generate the geometry as

indicated here in Fig. 2 .
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T c
/ c

Fig. 2.
In particular, think of the turning point C connecting 0 and 1 in G, or C
connecting L and R in D,. Correspondingly, for
I{T\TEAD(Z) (LC C RC)
and LL 5 0, LIRS 3., RR S 2 and RL N 1, we want the turmng point LC in
.G, to connect LL and RL in D,, Cin G2 to connect RL and RR, and RC in

G, to connect RR and LR.

Symbolically, we can write, for

D,: LER, andfor

D,: LL Y RL S Rrr RS 1R,
and call these the defining diagram for the corresponding D See Fig. 3 to illustrate
1, G;, and D, in the case that m=1.5.

]

g2

Fig. 3.
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At the next stage we have
KNEAD(3) =(LLC LC LRC C RRC RC RLC)

and the corresponding defining diagram for Dj is

LLC g1 L€ mer IRC 1rr S 1rRBRC rer RS mir RLC 11m.

We point out here that in the case there is one letter, C, corresponding to the

LLL

turning point, the extracted diagram from above,
LrL S LRR
can be viewed as meaning that C acts on LRL, and since there is one letter in C,

then the first letter from the right in LRL is changed, resulting in LRR. This is then

interpreted as LRL being connected to LRR. Note that LRL &1 and LRR L

2
§ .
If there are two letters, as in LC, then the second letter from the right in RLL is

change resulting in RRL, etc.

In this short paper we omit the technical aspects of the longer paper [S] which
gives the algorithms on which the computer code is based and which lay the foundation
for the proof of the following which is the main theorem of the paper.

Theorem. The sets Dy in the plane converge in the Hausdorff metric to a set that is

an embedding of inv(I, f) in the plane.

SAMPLES OF COMPUTER GRAPHICS.

We now show on the next few pages a few samples of the pictures that have been

generated from the various versions of code that have been written for different maps.
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I. TENT MAPS.

a) For0< m < 1, the inverse limit, LIM is a point.
b) For m =1, LIM is an arc.

c¢) For m > 1, LIM contains an indecomposable continuum.
For m =1.512, D5 =

Form= 1.722, D;=

Form= 2, D;=
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II. Topologist’s map.

PL-maps through (0.0). {.5,1), and (1,t), for t € I.

a) For 0 <t <.5, LIM contains an indecomposable continuum.
Fort=.2, Dy=

b) For t=.5, LIM is a sin(1/x) curve.
D5 =

¢) For 5<t<1, LIM is an arc.
FOI' t-_—.g, D5 =
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ITI. Dynamicist’s function.
PL-map through (0,t), (.5,1), and (1,0).
a) For 0 <t <.5, LIM is indecomposable.
For t=.5, map is Golden Mean Map and LIM is a famous indecomposable

continuum. For t=.5, Dy =

b) For .5 <t <.75, LIM contains an indecomposable continuum.

¢) For t=.75, LIM is double-ended sin(1/x) curve.

/

)

d) For .75 <t <1, LIM is an arc.
For t=.9, D; =
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IV. For Bimodal Map.
For PL-map through (0.0), (1/3.r), (2/3, t), and (1,1) for 0<t <r< 1.
a) For 0<r<t, LIM is and arc.
b) Forr=2/3,t=1/3. LIM is a sin(1/x) with arcs limiting in from both sides.
D4 =

c)For1/3<t<r<2/3 or 1/3<t<r<2/3, LIM is an arc.

Fort=1/3andr=.5, D,= /\

d) For either r>2/3 or t<1/3, LIM contains an indecomposable continuum.

For r=.9,t=.5, D,=
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In Codimension—k Manifold Decompositions
- the Discontinuity Set does not Locally Separate
the Decompositon Space

FRANK H. SHAW
June 17, 1993

Given an (n + k)-manifold M decomposed upper semicontinuously into closed
submanifolds of dimension n, what can be said of the structure of the decomposition
space? How must the submanifolds be packed together? One might imagine that,
if the codimension is small, rather stringent rules apply. What happens when the
codimension is increased?

A codimension-k manifold decomposition is an upper semicontinuous decompo-
sition of an (n + k)-manifold M without boundary into subcontinua having the
shape of closed connected orientable n~manifolds. Throughout this paper we use
the following notation: = : M™*t* — B is a codimension—& manifold decomposition
of M, an (n + k)-manifold without boundary, with B denoting the decomposition
space.

To date, much of the investigation of codimension—k manifold decompositions has
taken the tack of assuming knowlege of the source manifold and the decomposition
elements and then inferring information about the structure of the decomposition
space.

In particular, much has come of restricting the codimension to & < 3. Here the
decomposition elements have to fit together in nice ways and consequently, much
can be said about B.

Fundamental to these studies is the concept of the n-winding function and its
continuity set, which is the maximum open subset C of B over which the Leray
cohomology sheaf in dimension n is locally constant. The n-winding function used
in this paper is that used by Snyder [Sn], a variation of that used in [CD] and
[DW2] in that it is defined on the n-th cohomology groups rather than the n-th
homology groups. This is convenient because it gives an insight into the relationship
between the winding function and the Leray cohomology sheaf.

For a fixed b € B, let Uy be an open neighborhood of b such that there exists a,

(shape) retraction
T W—I(Ub) — w—l(b).

0This work was completed as a dissertation under the the supervision of John J. Walsh at the
University of California, Riverside. -
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Fixing b,Uy, and r, we have, for each y € U, the restriction homomorphism
h: H™(n "1 (Uy); Z) — H*(r"'(y); Z2).

The composition of the inverse of the restriction isomorphism induced by r and A
gives a well defined homomorphism

(L) | (a7 (b),Z) — H™(x(y);Z)

between copies of Z. The n-winding number of y with respect to b, denoted ay(y),
is the absolute value of the degree of this homomorphism.
We have:

Definition. The continuity set C C B is the set
C = {b€ B | there exists U, with ap(b')=1for all b’ € Us}.
Definition. The discontinuity set D = B\ C.

Definition. The degeneracy set of B, denoted K, is the set of all points b € D such
that for each W C B with b € W , there exists & € W with a3(8') = 0. Coram and
Duvall [CD] proved that C is dense and open in B. It is in the discontinuity set,
and, in particular, in the degeneracy set that the anomolies occur which make the
study of codimension—k manifold decompositions interesting and difficult. Many of
the results we have to date have been ferreted out by discoveries limiting the extent
of the discontinuity and degeneracy sets. The paper in hand takes a general step in
this direction, asserting that the discontinuity set does not locally separate B.

To evoke the proper context, we here restate the findings which suggest that the
above result might be true.

In the codimension-1 case, we have that B is a one-manifold [D1], possibly with
boundary but with B = ) provided both M and the elements of G are orientable.
Daverman proved that C = Int(B). Thus, trivially, D does not locally separate B.

In the codimension-2 case [DW1 DW2] it has been shown that D is locally finite
m B. This result was more than enough to prove that the decomposition space is
a 2-manifold. Daverman was able to remove the orientable condition on M and
showed that, for non-orientable M, B might possibly have boundary [D2]. Thus,
in the codimension-2 case, D does not locally separate B.

Finally, Daverman [D3] found in his investigation of PL maps with manifold
fibers that the discontinuity set is relegated to at most the (k — 2)-skeleton of (the
polyhedron) B: :

THEOREM [DAVERMAN)]. Suppose m : M — B is simplicial. The continuity set C
of # : M — B satisfies B\ B¥~2 C C and C meets each connected .open subset of

B in another connected set.

The main result of the work in hand is provides a pleasing complement to Dav-
erman’s result.
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THEOREM 1. Let 7 : M — B be a codimension—k manifold decomposition of M, an
(n+k)-manifold, into sets having the shape of closed oriented n—manifolds. Suppose
that dim(B) < oo. Then D, the discontinuity set of 7, measured with respect to 7
coefficients, does not locally separate B.

We present here a sketch of the proof of Theorem 1 dealing with the intuitively
tractible special case of 7 : $* — B where n~1(b) & S'Vb € B. It is still an open
question whether or not such a decomposition can exist. If it does, Daverman [D3]
has shown that it cannot be a piecewise linear map. In any case we sketch below
the argument showing that the degeneracy set K of 7 in this case cannot locally
separate B. '

SKETCH OF PROOF: We assume that there exists a subset of K and a connected
open U C B such that U \ K has multiple components U;. For some U; we further
assume that OU; \ K = D? and that there exists a subset A CUUK such that

(1) PACK

(2) (A\OA)NK =0, and

(3) A does not separate B.

For a contradiction to the above we now look at 7! (A) in the source manifold
S*%. We will argue that 7~1(A) separates S* as is shown in Figure 1. Note that,
since (A\ 8A) C C, 771 (A\ 8A) = D? x S*. Furthermore, since 4 C K, n1(A)
consists of D? x 5 together with 771(8A) = 5 x S! where the frontier of D? x S1

is wedged onto an S C n71(9A).
It is clear then that the generating element of H2(n~1(dA)) & Z is contained in

H?*(z71(A)) and
H?(n7Y(4)) — H%(z"1(84))

1s a surjection. Following along the long exact sequence for (7=1(A),7"1(84)) we
have

H (v~1(4), 771 (24)) — H*(x~}(94))
is an injection. Our simplifying assumptions give
H*(n™Y(A), 771 (0A4)) = H*(A x S*,84 x S1)
and the Kunneth formula shows that
H*(A x 5,84 x S*) = H*(A4,04) @ HY(S') = Z.
Thus H*(n~1(A) # 0 and by duality H,(5%,5%)\ 7n71(A)) # 0. We see by
0= Hy(S%) — Hy(S%, 5%\ 7(4)) — Ho(S*\ 771(4)) = Ho(S*)

that
) Ho(S*\ 771(A)) 2 Ho(5*)
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which implies that 7~1(A4) separates S*. Since A does not separate B we have a

contradiction. I

The generalization of the above sketch encounters numerous difficulties. The set
A must be constructed carefully so that its complementary domains in B are con-
trolled. The proof that H™+*~1(7=1(A)) +# 0 involves a lengthy spectral sequence
argument. Furthermore, since the theorem deals with the discontinuity set D in-
stead of the degeneracy set K, it is necessary to manipulate the coefficient modules
mn order to bring the argument into line with the one sketched above.

Figure 1
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h-connected Groups and Spaces

Mathew Timm
Bradley University

1. Introduction and motivation.

It is clear that if p:X—Y is a (connected) finite sheeted cover of the simply connected manifold
Y, then p is a homeomorphism from X to Y. Thus a connected simply connected manifold is one
which has the property that its only finite sheeted covering spaces are copies of itself. Jungck[J] was

investigating proper local homeomorphisms when he coined the term H-connected to describe this sort

of situation.

Definition 1.1. Let Y be a first countable, connected, Hausdorff space. Then Y is H-connected iff

whenever p:X—Y is a connected finite-sheeted covering space, it follows that p is a homeomorphism.

If one assumes that the above space Y is a compact manifold, there is the additional observation that
for dimY=1,2, Y is H-connected if and only if Y is simply connected. For dim Y=n > 4, there are
compact n-dimensional H-connected manifolds that are not simply connected. (See Timm[T1] for one
such construction.) If dimY=3 an interesting situation develops. Let RF denote the class of all
compact, connected, 3-manifolds, with residually finite ;. Now note that if Y is finite dimensional,
compact, and H-connected, then HI(Y) is trivial. Hence, by duality, a compact H-connected 3-
manifold is a homology sphere. Now, if M € RF and is H-connected, one obtains that M is simply
connected. So, for the class RF one asks “Is every H-connected space in RF a topological sphere?”
The following generalization of the idea of an H-connected space was suggested by the n-tori,
Th=5l x ... xSl. Note that T® has the property that if p:X—T" is a connected finite sheeted cover

then X is homeomorphic to TP. However the given covering projection need not be a homeomorphism.

Definition 1.2. Let Y be a connected first countable Hausdorff space. Then Y is k-connected if and
only if given any connected covering p:X—Y, it follows that X is homeomorphic to Y via some
homeomorphism. A group G is H-connected, or Hc, if and only if given any monomorphism (¢:H—G
with [G:p(H)]<oo it follows that ¢(H)=G. Equivalently, G is Hc if and only if it has no nontrivial
finite index subgroups. A group G is h-connected, or ke, if and only 1f whenever @:H—G is a
moglomorphism it follows that (o(H)= G via some isomorphism. Equivalently, G is hc every finite
index subgroup of G is isomor'p‘hic to G. (To avoid confusion, read ‘h-connected” as “little h-
connected” and “H-connected” as “big H-connected.”) If G is h-connected, write G € hc and if G is
H-connected, write G € Joc. It is clear that Joc C he.
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The group theoretic notions are related to Hopfian conditions. In particular, if G € J6c and there
is no monomorphism :G—G such that [G:(G)] is infinite, then G is cohophian. Daverman[D1], [D2]
says that a group G is hyperhopfian if and only if for every homomorphism ¢:G—G with ¢(G) normal
in G and G/ Lp(G)‘ cyclic it follows that ¢ is an automorphism of G.

Fact 1.3. Assume G is finitely generated. Then, G € Jbc if and only if G € hc and is hyperhopfian.

Proof. Observe that, if G € Jbc, there is no homomorphism (:G—G such that ¢(G) is normal and
G/@(G) infinite cyclic. Hence, if G € Joc, then G is hyperhopﬁan. On the other hand suppose that
G € he, G is finitely generated, and G is hyperhopfian. Assume that G ¢ Jic. Then G has a
subgroup H with 2 < [G:H]< +co. By results in Section 2 we may, without loss of generality assume
that H is normal and G/H is cyclic. Since G € hc, there is an isomorphism ¢:G—H. But G is
hyperhopfian. Therefore, ¢ is an automorphism. Contradiction, since ¢(G) # G.

As TD shows, there are h-connected spaces that are not H-connected and, as its fundamental
group Z X ...XZ shows, there are hc groups that are not Hc. Furthermore, there are finitely
presented, nonabelian hc groups that are not Hc. For example, let G be a finitely presented infinite
simple group, e.g., see Higman[H], then G X Z is a finitely presented, nonabelian hc group that is not
Hc. If M is a 4-manifold with 7{(M)=G then M X S1 is an h-connected 5-manifold with nonabelian
-

Section 2 of this manuscripts presents some immediate corollaries of these definitions and gives

several conditions for an h-connected space to be H-connected. Section 3 looks at h-connected nilpotent

groups.

2. Elementary properties.
In this section the word space will be used to denote a connected, first countable Hausdorff space

that is locally path connected and semi-locally 1-connected. These properties assure that the spaces
under consideration have a simply connected universal covering space and that there is a one-to-one
correspondence between covering spaces of a given space and subgroups of its fundamental group. See
Spanier[S]. Typically, one may assume they are compact. The first few results in this section are

stated without proof. Their proofs follow easily from the definitions and the results preceding them.

Fact 2.1. Let G € Jbc and let ‘G’ denote its commutator subgroup. If G is finitely generated, then
G/G’ is trivial. So if M is an H-connected manifold with finitely generated 7y, then H,(M)=0.
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Note that if G is not assumed to be finitely generated then it is not the case that G/G’ is trivial.
For example, the additive group of rationals, {J, has no nontrivial subgroups of finite index. So

G € Joc. Since Q is abelian it has trivial commutator subgroup. So Q/Q’= @ which is not finitely

generated.

Fact 2.2. Let M be a space with finitely generated fundamental group. Then M is H-connected if and
only if m1(M) € Jbc.

Observe that there are spaces Y with 'n'l(Y) € hc while Y is not h-connected. For example,
sl V1, the join of the circle and the closed interval has hc fundamental group but is not itself h-
connected. There is however at least one situation where it is easy to see that the analog of Fact 2.2 is

true for h-connected spaces. The reader may find that Fact 2.4 is of use in its proof.

Fact 2.3. Let M be a compact two dimensional manifold. Then M is h-connected if and only if
71(M) € he. .

Fact 2.4. Let M be a compact, h-connected space. If M is not H-connected, that is, if M has a

nontrivial finite sheeted cover, then the Euler characteristic, x(M), is zero.

Theorem 2.5. Let G € he. If G is finitely generated and G ¢ J6c, then G has a normal subgroup H
such that G/H is finite cyclic. Note that necessarily H= G.

Proof. Since G € hc\Jbc, G has a subgroup K such that 2 < [G:K]< +co. So G finitley generated
implies that G has a normal subgroup N < K with 2 < [G:K] < [G:N]< +oco. Choose g € G such that
its image §=gN € G/N is nontrivial and consider the cyclic subgroup <g> < G/N. Let <g>* denote
its pullback under the canonical projection G—G/N—1. Then <§>* is of finite index in G. So
G € hc implies that there is an isomorphism go:G—-><§>* . Take H=p~ 1(N). Since N is normal in
<g ' it follows that H is normal in G. Furthermore G/H= <g> is finite cyclic.

Corollary 2.6. Let G € hc\J6c. Then G is neither hyperhopfian nor cohopfian.

Corollary 2.7. Let M be a space with finitely generated fundamental group.. M is H-connected if and
only if M is h-connected and H;(M)=0.

Proof. If M is H-connected then it is trivially h-connected and by Fact 2.1, Hl(M)=0. So assume that

M is h-connected and H;(M)=0. Now assume that M is not H-connected. Then M has a nontrivial
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finite sheeted covering space. Hence 71(M) € hc\Jbc. So 71(M) has a normal subgroup N such that
71(M)/N is finite cyclic. In particular, 71(M)/N is a nontrivial abelian group. Thus N contains the

commutator subgroup of 71 (M) and it follows that H;(M) # 0. Contradiction.

While the next characterization of an H-connected space clearly follows from the theorem, the
question it answers originally arose after reading Hicks and Saligia’s[HS] work on fixed points of non-

self maps and a conversation with G. Jungck.

Corollary 2.8. Let M be a space. If M is h-connected and satisfies the fixed point property (FPP) for

homeomorphisms, then M is H-connected.

Proof. Assume that M is h-connected and satisfies FPP for homeomorphisms. (A Aspace X satisfies
FPP for homeomorphisms if and only if every homeomorphism h:X—X has a point x such that
f(x)=x.) Assume that M is not H-connected. Then by the theorem and the fact that M is a space, M
has a regular nontrivial finite cyclic cover p:ﬁ —>M where M is homeomorphic to M. Let a € AutM M
be a generator of AutM M. Then, in particular, aM—M isa homeomorphism. Since M has FPP for
homeomorphisms and FPP for local homeomorphisms is a topological property, M has FPP for local
homeomorphisms. Therefore & has a fixed point, Xq- Thus for all n € Z, an(x0)=x0. Hence,
p~ l(p(xo))z{xo}. But p is a finite nontrivial cyclic cover of M and « is a generator of the nontrivial
finite cyclic group AutMM, Therefore #(p_l(p(xﬂ)))zlal 2> 2. Contradiction. Hence M is H-

connected.

The converse to Corollary 2.8. is clearly false. The 2-sphere, S2 comes to mind. It is simply
connected, therefore H- and h-connected, and yet the antipodal map is a homeomorphism that has no
fixed point. One wonders what topological condition can replace “FPP for homeomorphisms” to

obtain necessary and sufficient conditions for h-connectedness to imply H-connectedness. The next

result suggests such a property.

Definition 2.9. Let Y be first countable, Hausdorff, and connected. (Note that we do not assume that
Y is a space.) A closed subset K of Y is locally separating in Y if and only if K # 0 and there is an
open subset V C'Y with K C V such that V\K=A|JB with A and B nonempty disjoint open subsets
such that KCANB. We say that Y satisfies LG if and only if whenever K is a closed locally
sepzfra.ting subset of Y it follows that K is globally separating.

Lemma 2.18. Let Y be first countable Hausdorff. (Again note that it is not assumed that Y is a
space.) If' Y is H-connected, then Y is h-connected and satisfies Property LG.
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Proof. Since Y is H-connected it is trivially h-connected. For a proof that Y satisfies LG see

Jungck[J, 7.6].

An obviously forced partial converse can be obtained by mimicking Theorem 2.5 and the proof of the
“if” portion of Corollary 2.7 in the topological setting. The statement follows. Its proof is a

straightforward consequence of Jungck([J, 7.7].

Lemma 2.11. Let Y be first countable, Hausdorff, and connected. Assume that Y satisfies (*).
(*) Y has a nontrivial finite sheeted covering space, M, that has a finite cyclic regular cover.

If Y is h-connected and satisfies LG, then Y is H-connected.

3. On the upper central series of hc groups
The results in this section are motivated by Conjecture 3.1. Complete proofs of these lemmas can

be found in [T2]. A proof of a version of the conjecture appears at the end of the section. Good

references for the group theory are Scott[Sc] and Hungerford[Hu].
Conjecture 3.1. Let G € hc be finitely generated. If G is nilpotent, then G is free abelian.

Corollary 3.2. Let M be a compact, sufficiently large, (PL) 3-manifold with To(M)=0. If m{(M) € hc
is nilpotent, and Conjecture 3.1 is true, then T{(M) isone of Z, Z®Z,or ZHZ B Z.

Proof. The indicated groups are the only free abelian ones that appear in Evans and Moser[EM].
Lemma 3.3. Let G € hc be finitely generated. If G is abelian, then G has no nontrivial torsion.

Proof (Sketch). This follows from the Fundamental Theorem of Finitely Generated Abelian Groups
and the definition of an hc group.

Lemma 3.4. Suppose that G satisfies that maximal condition on abelian subgroups or equivalently
satisfies ACC on abelian subgroups. (See [Sc,p.85]) K A is an abelian subgroup of G and w:G—Gisa
monomorphism such that A < ((A) then A=p(A).

Proof (Sketch). One uses the fact that A < ¢(A) to obtain ascending chain of abelian groups and then

apply the fact that such a chain must terminate.
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Lemma 3.5. Suppose G € hc and that G has a normal subgroup N such that for every monomorphism

©:G—G with N < ¢(G) and [G:¢(G)] < oo it follows that (o(N)=N. Then G/N € hc.

Theorem 3.6. Let G € hc be a group that satisfies ACC on subgroups. Let
IZZO(G) S Z].:Z].(G) S Z2(G) S ceee S Zn(G) S .....

be the upper central series for G. Then for all n € N, G/Z,(G) € hc.

Proof. The result clearly follows from the definition of Z, the fact that the class of groups satisfying
ACC on subgroups is closed under quotients, and induction on n, provided that G/ Z,(G) € he.

Let Z=Z;(G). Assume that [G/Z:H/Z]<co. Since [G/Z:H/Z]=[G:H] and G € he, it follows that
there is an onto isomorphism ¢:G—H. Observe that since Z<H<G it follows that
Z < Z,(H)=p(Z). So, by Lemma 3.4, Z=Zy(H)=@(Z;). Therefore, by Lemma 3.5, G/Z € hc.

Theorem 3.7. Let G € hc be finitely generated. Assume that G is nilpotent of class n and
1=Z0(G) < 2,=24(G) < Z9(G) < .... < Zy(G)=G

is the upper central series of G. Then all of G, G/Zy(G) for k=1,...,n, and Zy +1(G)/Zk(G) are

torsion free.

Proof. Observe that since G is finitely generated, nilpotent it satisfies ACC on subgroups by
[Sc,8.4.35] and [Sc,p.85]. Hence the preceding results apply. Since G is nilpotent and satisfies ACC
on subgroups it is supersolvable by [Sc,7.2.7]. Therefore, by definition of supersolvable and M-group,
G is an M-group. So, by [Sc,7.1.11], G has a characteristic torsion free subgroup H of finite index.
But G € he. So [G:H]<co implies G= H. Therefore, G is torsion free. By induction, and Theorem
3.6, G/Z}(G) is torsion free for all k=1,...,n. Since g is torsion free, it is clear that Z,(G) is torsion
free. Hence, by [Sc, 6.4.26], it follows that Zy +1(G)/Zk(G) is torsion free for all k.

Remark 3.8. If G is finitely generated it actually follows from the first part of the proof of Theorem
3.7 and [Sc, 7.2.21] that G is nilpotent if and only if G is supersolvable.

To prove a version of Conjecture 3.1, some notation is introduced. Say that G € Zn, if G € ke
and is finitely generated, nilpotent. with an upper central series in which Z,=G. Note that G €
does not mean that n is the least natural number for which Z,;=G. See [Sc,p.142]. Observe that every

finitely generated G € hc that is nilpotent is in some, in fact, infinitely many Bp,.
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Fact 3.9. If 25 contains only finitely generated free abelian groups, then 5 ,, contains only finitely

generated free abelian groups for all n > 2.

Proof. The proof is by induction on n. For n=2 the result follows by assumption. So suppose that for
al2<k<n-1, %k contains only free abelian groups. Suppose that G € By. If G is abelian we

are done. So, supposed that G is not abelian. Then G has an upper central series
1 S Z1=Z1(G) S Z2 S caee S ZD=G'

Note that since G is non-abelian, Z; # 1 and Zy # G. By Theorem 3.6 we have that G/Z; € hc.
Furthermore, since G is finitely generated, G/Zl is finitely generated and since G is not abelian,
g(G/Z;)=g 2 1. Finally, by observe that G/Z, € %, _1- Therefore, G/Z; is free abelian of rank
g > 1. Therefore, G € Z9. Hence G is finitely generated free abelian. Contradiction. Thus 2%

contains only finitely generated abelian groups. So the full result follows by induction.
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SOME INTERESTING CONTRACTIBLE
3-MANIFOLDS

Fred Tinsley and David G. Wright

1. Introduction. The classical contractible 3-manifolds, Whitehead manifolds and
related manifolds that are nice at infinity , are known to not cover any manifolds other
than themselves by a trivial covering projection [My], [Wr]. By nice at infinity we mean
- that the 3-manifold is eventually end irreducible as described in [B-T] or [B].
Equivalently, we mean that the 3-manifold is eventually 7j-injective at infinity as

described in [Wr].

Definition 1.1. A topological space X is said to be eventually rj-injective at infinity if
there is a fixed compact set K (a core) of X so that for every compact set A there is a
compact set B so that loops in X - B which are inessential in X - X are also inessential in

X-A.

Informally, we think of this property as stating that loops close to infinity which are
inessential missing the core are inessential close to infinity. This condition is really a
very mild condition which is satisfied by all the classical contractible manifolds including
the genus one Whitehead manifolds for which any torus in a defining sequence serves as

a core.

In this note we construct contractible manifolds that are not eventually 7i-injective at
infinity and yet still have the property that they cover no manifold other than themselves.

2. Whitehead manifolds. A genus one Whitehead manifold [Wh] is a 3-manifold that is
the monotone union of solid tori T; so that T; < Int T4, T; is contractible in 7,1, but 7

does not lie in a ball contained in T}, ;.

It is a well-known that T; does not lie in a ball in the Whitehead manifold. McMillan has
made an extensive study of genus one Whitehead manifolds [Mc]. He has shown the
existence of uncountably many different such manifolds. The key ingredient in
McMiillan's proof is a lemma of Schubert [S]. We first state a definition and then

Schubert's lemma.
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Definition 2.1. If T7 and T3 are solid tori with Ty < T, the geometric index of Ty in T is
the minimal number of points of intersection of a centerline of T with a meridional disk
of Tp. See [Mc] or [S] for more details.

Lemma 2.2 (Schubert) Let T1 < T2 < T3 be solid tori so that the geometric index of 77 in
T is p and the geometric index of T3 in 73 is g. Then the geometric index of T in T3 is

pPq-

For each sequence o = (0;) of positive integers we construct a specific Whitehead
manifold Wy so that W, = UTj so that T} goes around Tj4+; 20.; times geometrically and
zero times algebraicly. McMillan [Mc] has shown that if o and p are sequences of
distinct odd primes such that an infinite number of primes occur in oe which do not occur
in B, then W and Wp are topologically different.

3. Contractible 3-manifolds that do not cover. We row indicate how to construct the
promised interesting contractible 3-manifold which we call W. The manifold W contains
disjoint open sets V and Uj, -0 < i < eo. Each Uj; is a Whitehead manifold corresponding
to a sequence (o) of distinct odd primes as described above. The set Vis

homeomorphic with Euclidean 3-space. The closures of the open sets U; and V are
manifolds with boundary U, and V', respectively. The boundary of U, equals a plane P;,

the planes P; are disjoint, and the boundary of V equals U7__ P,. The manifold W is the
union of the U, and V. Finally for some k the sequence (0j) of distinct odd primes

contains and infinite number of primes that do not occur in (ay;) for i # k.

The details of the construction and the proof that this cannot be a non-trivial covering
space are given in [T-W]. However we now sketch the intuition.

Step 1. Any homeomorphism # of W gives rise to a permutation of the {U;}. The open
set U; corresponds to & - U; = Uj if for any compact set K in U; , A(K) can be isotoped
into U;. An argument similar to McMillan's using Schubert's Lemma shows that # - Uy =
Uy for any homeomorphism of W.

Step 2. If h is a covering translation of W, then & - Uy = Uy, and so it is "almost" true that

h(Uy) = Ug. But by [My] or [Wr], Uy supports only the trivial covering translation so A
itself must be trivial.
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HOMOTOPY GROUPS OF COMPLEMENTS
OF TOPOLOGICAL KNOTS

GERARD A. VENEMA

1. INTRODUCTION

Throughout this talk we will assume that  is a topological embedding of the (n — 2)-
sphere into the n-sphere, h : S"72 — S We use ¥ to denote the image set h(S™=2)
and refer to ¥ as a topological knot. We will study the homotopy groups of the knot
complement S — ¥ and try to determine the largest possible dimension in which the first
nonstandard homotopy group can occur. Specifically, we wish to determine the largest
possible value of k such that 7;(S™ — ) 2 m;(S?) for i < k, but m(S™ — ¥) # me(S1).

Members of the audience are probably thinking that answers to questions like that
are well known. But what is known generally applies only to embeddings that are fairly
nice. (Here “fairly nice” means that the embedding is smooth, piecewise linear, or locally
flat.) The purpose of this talk is to demonstrate that the answer is quite different in the
topological setting.

2. HOMOTOPY GROUPS OF COMPLEMENTS OF SMOOTH KNOTS

Let us begin by reviewing the well-known facts in the smooth setting. When combined,
the two facts below indicate that the first nontrivial homotopy group of the complement of
a smooth knot can occur in any dimension below the middle dimension, but cannot occur
in the middle dimension or above. Similar facts hold in the PL and locally flat settings.

Fact 1. For each k, 1 < k < n/2, there is a smooth embedding h : S*~2 — S™ such that
mi(S" —3) 2 wy(S') for 1 < i < k but m(S™ — ) # 7k(S1).

Examples can be constructed which are boundaries of manifolds obtained by attaching
handles to the standard (n + 1,7 — 1)-ball pair [3]. Thus the examples are actually slice
knots. ‘ '

Fact 2. If h is smooth and m;(S™ — ) = 7;(S1) for 1 < i < n/2, then S — ¥ has the
homotopy type of S.

Fact 2 is proved by showing that the homology of the universal cover of S™ — ¥ vanishes.
If n is odd, this follows quite easily from Poincaré duality. If n is even, more care is needed
to prove that the homology group in the middle dimension vanishes. One approach is to
use “Milnor Duality” [2] . :
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Milnor Duality. Under certain conditions, an infinite cyclic cover of a compact n-
manifold will have the duality properties of an (n — 1)-manifold. In other words,

Hy(M™; F) = H™ Y3~ oM™, F)

for any field F.

Milnor Duality can be used to prove Fact 2 in case n is even. In that case the homology
in dimension n/2 is dual to the cohomology in dimension (rn/2— 1) and is, therefore, trivial.

3. HOMOTOPY GROUPS OF COMPLEMENTS OF TOPOLOGICAL KNOTS

In the case of topological knots, the first nontrivial homotopy group can occur above
the middie dimension. The surprising fact is that it can occur in any dimension up to
n — 2. The following example will appear in [4].

Example. For each n and k, 1 < k < n — 2, there exists a topological embedding h :
572 — S™ such that m;(S™ — T) = 7;(S?) for i < k but mk(S™ — ) # 0. The embedding

1s smooth except at one point.

If £ > n/2, the knot in the example must necessarily be wild (because of Fact 2). There
is a close relationship between the global homotopy groups of the knot complement and
the homotopy groups of the end of the complement. We explore this relationship in the
next three results (to appear in [4]).

Notation. We use W to denote the knot complement S™ — 5., W to denote the infinite
cyclic cover of W, and € to denote the end of W.

Theorem 1. If mi(e) = m;(S') for i < n —k — 1, then Hk(W; F)x~ H"“k‘l(W; F) for
every field F. ;

Corollary 1. If m;(W) = 7;(€) & 7;(S*) for i < k, then H,-(W; Z)=0fori>n—Fk-—1.
Corollary 2. If (W) = m;(e) & mi(S?) for i < n/2, then W has the homotopy type
of S1.

Conversely, the homotopy groups of the end of W can be controlled by controlling the
global homotopy groups of W. In particular, if m;(W) = m;(S?) for every i, then any
nontrivial homotopy group of the end must appear in dimension 1.

A geometric version of the following result was proved by Hollingsworth and Rushing [1].
We give an elementary proof based on duality.

Theorem 2. Fm;(W) = n;(S") for every i and 71 (€) & Z, then mi(e) =0for2<i<n-3
and T,_y(€) = Z.

If we combine Theorem 2 with Corollary 2 we get the following result. It is a topological
version of Fact 2. B
Corollary 3. If m;(W) = m;(e) & m;i(S?) fori < %, then W has the proper homotopy
type of ST x R*~1,
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4. A NONCOMPACT VERSION OF MILNOR DUALITY

The proof of Theorem 1 is based on a noncompact version of Milnor Duality. We assume
the following notation for the remainder of this section: W is a noncompact PL n-manifold,
W has one end ¢, and p: W — W denotes an infinite cyclic cover. As in Milnor’s original
work, it is convenient to use coefficients in a field F.

Definition.

HY(W,& F) = lim H¥(W,p™ (U); F)

where the limit is taken ovér the collection of all neighborhoods U of the end €, ordered
by inclusion.

Definition. We will say that HL(W & F) s profinitely generated over F if for every
neighborhood U of € there e exists a neighborhood V' of €, V' C U, such that the image of

Hk(W p Y V); F) in Hk(W p Y (U); F) is finitely generated over F.

In [4] we prove the following noncompact version of Milnor Duality and use it to prove
Theorem 1, above. :

Theorem 3. If H; (W & F') is profinitely generated over F forn —k—2 <i < n—Fk, then
Hy(W;F) = H (W & F).
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