Asymptotics of the Period Map

Eduardo Cattani

University of Massachusetts Amherst

June 19, 2012
CBMS - TCU



Hodge Decomposition

Hodge Decomposition

Let X be a smooth, n-dimensional, compact Kéahler manifold.
Then HX(X, C) decomposes as:

HX,C)= @ HP9; HIP =Hpg,
p+q=k
where HP-9 may be described as the set of cohomology
classes admitting a representative of bidegree (p, q).

Requires existence of Kahler structure w but depends only on
complex structure.



Lefschetz Theorems and Primitive Cohomology

Lefschetz Theorem

Ifk =n—¢, ¢ >0, then multiplication by powers «// of a Kahler
class is injective for j < ¢ and an isomorphism forj = /.

The primitive cohomology is then defined as
HE(X) == {a € HX(X) : " Ua =0}

The Hodge structure restricted to the primitive cohomology is

polarized; i.e. satisfies the Hodge-Riemann bilinear relations:



Hodge-Riemann Bilinear Relations

Define a real bilinear form Q on H*(X, C) by

Qo ) = (—1)5" /Xaw,

where deg(«) = k and the right-hand side is assumed to be
zero if deg(a U 3) # 2 dimg(X).

Then, the Hodge decomposition on H*(X, C) is Q-orthogonal
(first bilinear relation) and:

iP~9 Q(a,w* Ua) >0 (second bilinear relation)

for any
CYEHp’q(X)mHg+q(X,C); k:p—|—q:n—€

Moreover, equality holds if and only if « = 0.



ETIES

Varying the complex structure of X defines a variation of the
Hodge structure in cohomology.

Typically this arises from a family of varieties:

f:xcPN> s,
where f is a proper holomorphic submersion so that the fibers
Xy = f~1(b) are smooth projective varieties.

Example: X = {(x,y,1): y? = x(x — 1)(x — 1)};
S={t:0<|t]<1}.
The fibers X; are curves of genus 1.



Such a family is locally C°-trivial. Globally, the diffeomorphism
between fibers is only well defined up to homotopy. At the
cohomology level we get a homomorphism:

p: m(S, 80) — AutZ(Hk(Xso,Z), Q) = Gy

called the monodromy representation.

Example: If S = (A*)" then 7¢(S) = Z" and p is determined by
r commuting elements:

717'-'77f€GZ-

Theorem: (Landman; Katz) The ~; are quasi-unipotent; i.e.
7" = eMi. Moreover, Nf"" = 0.



Classifying Space

We fix the data (Vz, k, h*9, Q) and consider the space D of all
Q-polarized Hodge structures on V¢, with these invariants.

To a Hodge decomposition we associate a filtration

FP.=PH> 2, FPaoFkpPil =\,

a>p
Conversely such a filtration defines a decomposition:
HP9 .= FP N Fq.
Do < {flags --- FP c FP~1 c ... : Q(FP,Fk=P*1y =0}=: D

D is a smooth projective variety. The group G = Aut( V¢, Q)
acts transitively on D and D is an orbit of Gr := Aut(Vz, Q):

D=Gc/B; D=Gg/V.



Example: weight 2

V(C — H2,0 ® H1’1 ® HO,Z; HO’Z _ H270

The polarization Q is symmetric, negative-definite on the real
subspace (H>°? @ H%2?) N Vg and positive-definite on H' N V.

Gr = O(2h*° W1y, V= U(WP0) x O(h™Y).

D={F?cF": Q(F?,F") =0} c G(H*° V) x G(M*° + h""!, V).



Period Map

A family f: X — S defines a map
®: S— Gz\D

The local liftings to D are holomorphic and satisfy differential
equations: Griffiths’ transversality (aka: Horizontality).

The tangent space to D is a subspace of the tangent space to
the product of Grasmannians:

TeD C @) Hom(FP, Vi /FP).
p



Griffiths’ Transversality

Griffiths’ Transversality Theorem

The differential of the period map takes values on the subspace

& Hom(FP, FP~" /FP).
p

Example: If : U ¢ C — D is a period map of PHS of weight
two. Then the subspace F(z) := F?(z) determines the Hodge

filtration and:
Q(F(z2),F'(z)) = 0.



Abstract Variations of Hodge Structure

A VHS of weight k consists of: a local system V;, — S and a
filtration of the associated holomorphic vector bundle V:

...CFPCFP—1 c---CV

by holomorphic subbundles such that:
m V=FPgFk-pt,
m V(FP) c QL @ FP~1, where V is the flat connection on V.

The VHS is polarized if there exists a flat, non-degenerate,
bilinear form Q defined over Z, which polarizes the HS on each
fiber.



Hodge Structure in the Lie Algebra

If Vo = @ HP9isa PHS on V, we get a HS of weight 0 on

p+a=k
the Lie algebra gc :

gc = @gr,—r : [gr,—r,gs,—s] c gr—&-s,—r—s

where

g "= {X : X(HP9) C HPTraTY,
We have b = Lie(B) = F%g = @,-, 9" ". The adjoint action of
Bleaves F~'g = @®,~ 19" " invariant. The corresponding

homogeneous vector bundle on G¢ /B is the horizontal
subbundle.



Let Ve=C2=H"gHY =C. (’) ®C- (_’)
Then
gc=s/2,C)=g" @ g o g "

:c.<_1i 1’>@c.<(i’ 0">@<c.<1i _'1)



Asymptotic Behavior of the Period Map

Consider a period map
o: (A*) — Gz\D
with (unipotent) monodromy ~; = eNi, j=1,....r, where

/Vj € gr = Lie(GR).

The map \Il(t1,...,t,)exp( ZZL ) (t,....t)
j

is univalued with values in D.



Schmid’s Nilpotent Orbit Theorem

Nilpotent Orbit Theorem

m The map V extends holomorphically to A'.
m For|t| < e, the map

log t; .
(tr,... 1) > exp (Zz?r/’\’f)  Fim: Fim = W(0) € D
J

is an (abstract) period map, called a nilpotent orbit.
(Horizontality < Nj(FP.) c FP.'.)

m The nilpotent orbit approximates the period map ¢
exponentially.



Reformulation of Schmid’s Nilpotent Orbit Theorem

Let V — (A*)" be a VPHS with unipotent monodromy. Then the
vector bundle V has an extension

V = AT
whose sections around 0 € A’ are of the form
r
. log £
v(t) =exp (/1 27riNf> -v(t)

where v(t) is a (multivalued) flat section of V. Then, the
Nilpotent Orbit Theorem asserts that the Hodge bundles P
extend to V.



Mixed Hodge Structures

A (real) mixed Hodge structure on V consists of:
m An increasing filtration W = {W/,} defined over R, and
m A decreasing filtration F = {FP}, such that

F induces a Hodge structure of weight £ on GrEW; i.e. the
filtration
FP(GrY) == (FPO Wy + W,_1)/W,_4

is a Hodge structure of weight /.



Mixed Hodge Structures and Bigradings

(Deligne) There is an equivalence between mixed Hodge
structures (W, F) on V and bigradings

Ve =P 7P
a,b

such that

r<a,s<b

&b = |ba (mod @ /'75) .

If equality holds then we say that (W, F) is split over R.

Given the bigrading we set:

w,= @ r”*; FP=gprh.

a+b<¢ azp



Weight Filtration

Given N: V — V, nilpotent, we can define a unique increasing
filtration W,(N) such that:

m N(Wi(N)) c W,_»(N), and
m For />0, N Gr}l .= W,/W,_y —» G, isan
isomorphism.

Example: If N° = 0, then
{0} c W_y =Im(N) Cc Wy =ker(N) Cc Wy = V.

N: GrlV = V/ker(N) 5 Im(N) = Gr",.



Limiting MHS and Nilpotent Orbits

Theorem (Giriffiths, Deligne, Schmid, Kaplan, C.)

" log { ,

Suppose

is a nilpotent orbit of Q-polarized HS of weight k. Then

N(FP) ¢ FP=" and Nk+1 = 0 for every N in the open cone
C = {Z/ )\ij, )‘j € R>0}.

Forevery NN € C, W(N) = W(N'):= W(C)

(W(C)[—K], F) is a MHS (The limiting MHS.)

For every N € C, the form Q( e, N'e) polarizes the HS (of
weight k + ( in the subspace:

Pryy o = ker{N“*': GrY, — GrlV, .} W = W(C)[—kI.



Limiting MHS and Nilpotent Orbits

Theorem (Giriffiths, Deligne, Schmid, Kaplan, C.)

Conversely, if (Ny, ..., Ny; F,Q, k), N; € gr, F € D, satisfy the
above four properties, then the map

logt
(t1,...,t)—>exp( Zg/jN) F
=1

isa VPHS for |t| < e.



SL,-orbits and Polarized Split MHS

Suppose (W, Fy), W = W(N)[—k], is a polarized MHS split
over R. Then

2k
Ve =P Ve: (M)e= € P9 197 =1Ip3.
/=0 pt+q=¢

We let Y denote the real linear transformation defined by
Y(v)=(/—k)-vifve V. Notethat Y € gr and

N(IP9) ¢ IP~19=1T = [Y,N] = —2N.



SL,-orbits and Polarized Split MHS

Theorem

If (W(N)[—K], Fo) is a PMHS split over R, then there exist real
representations

p«:8l2(C) = gc;  p: SL2(C) = Ge

10 0 1
p*(o 1>_Y' ”*(o o>_N

giving rise to a horizontal equivariant morphism j: P! — D;
plg-i) = p(9) - (eN.Fy) mapping the upper-half plane U c P'
to D c D. Moreover, p, is a morphism of Hodge structures
(induced by i € U and exp(iN) € D). (Hodge representation).

such that



SL,-orbits and Polarized Split MHS

Conversely, any such Hodge representation arises from a
PMHS split over R.

There are canonical constructions that associate a split MHS to
a PMHS. One such construction is given by Schmid’s SL,-orbit
Theorem which also provides a detailed description of the
relationship with the nilpotent orbit.

A different functorial construction is due to Deligne.

These results extend to several variables.



MHS in the Lie Algebra

Suppose (W(C)[—kK], F, Q, k) is a PMHS on V. Let {9}
denote the associated bigrading. Then, we can define a
bigrading of gc by

12Pg = {X € gc : X(IP9) C [PHaa+hy,
This defines a MHS. Moreover [/3.0g, /70 g] ¢ [a+a.b+bg
We have: Lie(Stab(F)) = F%g = @, /**g and

g = @ [2bg

a<o0

is a complementary subspace. So we have a local model for D
near F:

.

Xeg.—exp(X)-FebD.



Let &: (A*)" — Gz\D be a period mapping with monodromy
Ny, ..., Ny and Fy, the limiting Hodge Filtration. Then

V(t) =expl(t)- Fim, and
o(f) = 09k py, r(t)- A
(t) =exp : onj U -exp(t) - Fiim,

where I': A" — g_ is holomorphic and I'(0) = 0. We can write

F(t)=> Ta(t); Ta(t)c P *Pq
b

a<o0



Asymptotics

If ® is horizontal then

X(t) = Z 'ogtf N+ Ty (t)

satisfies the differential equation
dX AdX =0.

Conversely, if Y: AT — @, I="Pg, Y(0) = 0, is holomorphic
and o
Z Og SN+ V()

satisfies the differential equatlon then, there exists a unique
period map with T _+(t) = Y(1).



Weight-three Example (Deligne)

Consider a PVHS over A* of weight 3 and h/ = 1. Assume that
the limiting MHS splits over R and N° # 0. Then

V(C — /0,0 @ /1,1 @ I2,2 ® 13’3

and
0 at) 0 o0
o o b o
=10 o o anl|
00 0 0



Weight-three Example (Deligne)

The definition of I'(t) depends on the choice of parameter t.
One can show that for g := t exp(2ria(t)), a(q) = 0. This
parameter is canonical.

Thus, the period map depends only on the nilpotent orbit and
one analytic function b(q).

The function b(q) also has a nice interpretation: For a suitably
normalized choice w(q) € H*>°(q) = F3(q), we may define

d

__ 3 . o i

k= Q (w(q),e (w(q))) ;9= 27r/qdq.
This is called the normalized Yukawa coupling. We have:

K= 27ring.



