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TOEPLITZ ALGEBRAS ASSOCIATED
TO ISOMETRIC FLOWS

EFTON PARK

Introduction

Let M be a compact Riemannian manifold, and let {qt} be a smooth one-
parameter group of isometries of M. The group is called an isometricflow on M.
In this paper, we associate a Toeplitz C*-algebra T() to an isometric flow on
M, and begin to study how the C*-algebraic properties of T((I)) are related to the
geometric and topological properties of

The algebra T() is defined as follows. Since each map qt is an isometry of
M, it induces a unitary operator Ut on L2(M), where M is endowed with the usual
measure coming from the Riemannian metric. Let D be the infinitesimal generator
of the group {Ut}, and let P be the positive spectral projection of D. Then T() is
the C*-subalgebra of ,(L2(M)) generated by the set {PMfP: f C(M)}, where

Mf is pointwise multiplication by f.
Toeplitz C*-algebras have been used by many researchers to study a variety of

problems in geometry and analysis, and Toeplitz algebras have been particularly
important in the study of flows. In addition, the C*-algebras one obtains by this con-
struction tend to be very interesting from an operator-algebraic point of view. Indeed,
the Toeplitz algebra on the circle, i.e., the C*-algebra generated by the unilateral
shift, is precisely the Toeplitz algebra one gets by taking M to be the unit circle in
the standard metric and where {bt is defined by letting t#t be a rotation of 2zrt
for each in .

There have been several papers written about Toeplitz operators and Toeplitz alge-
bras associated to flows. Toeplitz algebras for irrational flows on tori were considered
in [JX] and [JK]. These researchers examined the dependence of the Toeplitz algebra
on the particular irrational flow chosen, and they also computed the K-theory of the
Toeplitz algebras and their commutator ideals. It is natural to generalize the situation
studied in [JX] and [JK] to topological flows on compact Hausdorff spaces, and this
has been done in a series of papers. In [CMX], the spectral theory and index theory of
Toeplitz operators were explored. In [MPX], the authors studied the Toeplitz algebra
associated to a strictly ergodic flow, and they computed the K-theory of the Toeplitz
algebra and some related algebras. In [MX], Toeplitz algebras for n-actions were
defined, and the results obtained specialize in the case n to give improved results
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to those in [MPX]. In particular, this latter paper allows the authors to replace the
hypotheses of minimality and strict ergodicity of the flow with a weaker condition.

In a different direction, in [Pa] we considered Toeplitz algebras for flows defined
by one-parameter subgroups of compact Lie groups. These flows are typically neither
minimal nor strictly ergodic, and the methods used in [Pa] have more of a topological
flavor than the techniques used in the other papers mentioned above.

The current paper concerns itself with a much more general class of flows than in
[Pa]. We require our flows to act smoothly, so in one sense our setup is less general
than the one in [CMX], [MPX], and [MX]. However, by working in the smooth
category, we do not have to make any other restrictions on the flows we consider. For
example, we allow the flow to have fixed points.

Isometric flows have a wide range of behaviors. At one extreme, they may be
minimal, as in [JX] and [JK]. On the other hand, it is possible that all the orbits of
an isometric flow are closed, and hence very far from being minimal. In addition, as
we mentioned above, may have fixed points. We show that the closures of orbits
of partition M into compact submanifolds that are either tori or single points.
Furthermore, when is restricted to one of these submanifolds, then one either has
a point with the trivial flow on it, or an irrational flow on a torus. We prove that the
Toeplitz algebras over the orbit closures of form a continuous field of C*-algebras,
and that T() is isomorphic to the C*-algebra of continuous sections of this field.
From this, we deduce that 7"() is a diffeomorphism invariant of the flow ; i.e., if

is an isometric flow of M for two different metrics, then the corresponding Toeplitz
algebras are isomorphic.

This paper is organized as follows. In Section 1, we collect the various geometric
properties of isometric flows that we need. Several of the results in this section may
be known to geometers, but the author could find no reference for them, so proofs
of these results are included. In Section 2, we precisely define the Toeplitz algebra
T(), and we define the aforementioned continuous field of Toeplitz algebras. We
also define a measurable field of Hilbert spaces, and use this measurable field to
prove that T() is isomorphic to the C*-algebra of sections of the continuous field of
Toeplitz algebras. Finally, we show that T() only depends on the smooth properties
of .

The author would like to thank Ken Richardson for helpful discussions.

1. Properties of isometric flows

In this section, we collect the geometric properties of isometric flows that we will
use in the rest of the paper.

PROPOSITION 1.1. The orbit closures of form a partition ofM.

Proof. Let denote the relation of being in the same orbit closure of *. Clearly
is both reflexive and symmetric. To see that is transitive, note that x y
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means that there exists a sequence {Sn of real numbers such that limn 4sn (x) y.
With this in mind, suppose that x y and y z. Then lim,, qsn (x) y and
limn__, 4tn (Y) z for some sequences {sn} and {t }. Therefore lim qtn+s, (x)
limno qt, (qs (x)) limn 4to (y) z. r"!

The next result on the orbit closures of do is well known to many geometers; the
proof given here is adapted from the remarks at the beginning of Section 2 in [Ca2].

PROPOSITION 1.2. Let p be a point in M, and let do(p) denote the orbit of p.
Then the closure do(p) of do(p) is a submanifold ofM that is isometric to a torus fffk
with a bi-invariant metric. Furthermore, under this isometry, do restricted to do(p)
conjugates to (multiplication by) a dense one-parameter subgroup ofqk.

Proofi Note that do is a subgroup of the compact. Lie group Iso(M) of isome-
tries of M, and therefore do is a Lie subgroup of Iso(M). Since do is an abelian
group and a connected topological space, do is also abelian and connected, and is
therefore isomorphic to a torus. By Corollary VI.1.4 in [Br], do(p) is diffeomorphic
to the quotient of do by the stabilizer subgroup do__p of the point p, and thus do(p) is
diffeomorphic to a torus qI’k. This implies that (p) is closed in M, and therefore
do(p) do(p). Use the diffeomorphism between do(p) and do/dop to make do(p)
into a group. Then it is clear that do(p) is a dense one-parameter subgroup of do(p).
In addition, multiplication by elements of do preserves the metric on do(p), and since
these elements are dense in do(p), the metric on do(p) is bi-invariant. [2]

Let N be a closed submanifold of M. Then it is known (see [Mo], Section 3.1, for
example) that for some e > 0, the set V, {p M" d(p, N) < e has the following
properties:

(i) For each point x V,, there exists a unique point y in N closest to x, and these
points are connected by a unique geodesic that realizes this minimal distance.

(ii) The projection from V, to N given by mapping each point of V, to the closest
point of N defines a locally trivial fibration whose fibers are balls in k, where
k is the codimension of N in M.

Definitions. We call V the closed tubular neighborhood of radius e about N.
We call the boundary C of V the cylinder of radius e about N.

PROPOSITION 1.3. Let N be a connected proper submanifold ofM, and suppose
that N is a union of orbit closures of do. Then there exists a positive number with
the property thatfor each positive number t < , the cylinder Ca of radius ot about
N is a union of orbit closures of do. Furthermore, there exists a diffeomorphism
a" C -- Ca that intertwines the action of do on C and Ca. As a consequence, aPa
conjugates the orbit closures of do in C to the orbit closures of do in Ca.
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Proof. Choose e so small that N has a tubular neighborhood V of radius e. Since
preserves distance and maps N to itself, for any positive real number a less than

e, the cylinder C about N is a union of orbits. Since C is a closed set, it is also the
union of orbit closures.

Let x be a point in C,, and let p be the point in N closest to x. Let ?, be the
geodesic joining x and p, and define ap (x) to be the unique point on , that is in
C and is between x and p. Then the properties of tubular neighborhoods guarantee
that @ is a diffeomorphism. To see that p intertwines , take 4t in . Since tt
preserves distances, we necessarily have that qt (P) is the point in N closest to (t (X).
Moreover, since qt maps geodesics to geodesics, qt (’) is the geodesic through qbt(p)
and ckt(x), and thus ap(dpt(x)) dpt(@(x)). The last statement in the theorem then
follows immediately, v1

Remark 1.4. Note that Proposition 1.3 also implies that a tubular neighborhood
V, of N is a union of orbit closures.

Remark 1.5. When N is an orbit closure that is not a single point, then Proposition
1.3 follows directly from Theorem II.C.3 in [Cal]. However, since we allow to
have fixed points, a more general result that Carrire’s is necessary. Also, we will
need the full strength of Proposition 1.3 in future papers.

PROPOSITION 1.6. Let B be the quotient space obtained by identifying points of
M that are in the same orbit closure of. Then B is a compact Hausdorffspace.

Proof. Let zr denote the quotient map. Since M is compact, zr(M) B is
compact as well. To show that the Hausdorff condition is satisfied, let bl and b2 be
distinct points in B. Proposition 1.3 and the Remark 1.4 guarantee that we can find
neighborhoods V and V2 of b and b2, respectively, that are unions of orbit closures.
In addition, it is clear that we can choose V1 and V2 so small that they do not intersect.
Thus zr(V) and rr (V2) are nonintersecting neighborhoods of b and b2, respectively.

2. The Toeplitz algebra associated to an isometric flow

In this section, we take an isometric flow on a compact Riemannian manifold
M, define a Toeplitz C*-algebra T(), and study the structure of this C*-algebra. It
will be convenient to adopt the following notational convention: given f in C(M)
and b in B, fb will denote the restriction of f to the set zr -1 (b).

Equip M with the measure/z determined by the Riemannian metric. Each isometry
tt in induces a unitary operator Ut on L2(M) via the formula Ut() o t,
and so we have a one-parameter group {Ut} of unitaries on L2(M). Let D be the
infinitesimal generator of this group. Then D is a self-adjoint operator on L2(M)
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whose domain includes the smooth functions on M. Use the functional calculus
for self-adjoint operators to define P I X-,0)(D), where X-,0) denotes the
characteristic function of the negative real numbers. Note that typically P is just the
positive spectral projection of D. However, this more complicated definition of P
is necessary for dealing with situations where has fixed points; see the comments
following Proposition 2.3. Finally, for each continuous complex-valued function f
on M, define a bounded operator My on L2(M) via multiplication: Mf() f.

Definition. The Toeplitz algebra of *, denoted T(), is the C*-subalgebra of
(L2(M)) generated by {PMf P" f C(M)}.

The goal of this section is to describe T() in terms of Toeplitz algebras on the
orbit closures of *. For each point b in B, restrict the metric on M to get a metric
on zr-l(b). Equip rr-l(b) with the measure/z

b that this metric induces, and let
vol(zr -1 (b)) be the volume of rr-l(b) in the induced metric. If zr-l(b) is a single
point, we give it the counting measure, so in this case vol(zr -1 (b)) 1.

PROPOSITION 2.1.

L(M).
Thefunction q" M ---> given by q(p) vol0r-10rp))) is in

Proof. We induct on the dimension of the manifold M. If M is one-dimensional,
then the result is easily seen to be true. Now let M be an n-dimensional manifold,
and suppose that the proposition is true for manifolds of dimension less than n. For
each orbit closure N of *, choose a small tubular neighborhood of N, as in the proof
of Proposition 1.3. Since M is compact, a finite number of these tubes cover M, and
it clearly suffices to show that the integral of q is finite when restricted to the closure
of each of the tubes. Therefore, let V be the closed tube about an orbit closure N.
Since V is compact, we can modify the metric on V without affecting the finiteness
of the integral of q over V. Now, V is diffeomorphic to N x ]k for some integer
k, where k denotes the closed unit ball in I1i. Endow N with the metric it inherits
from M, give ]k its standard metric, and equip V with the product metric. Since V
is a tubular neighborhood of N, we may choose the diffeomorphism V N x k so
that cylinders are mapped to cylinders and geodesics perpendicular to N are mapped
to geodesics perpendicular to N. Then

q d volW fN q d VO1N d vol, fo q d VO1N dtrr-1dr,
xrS-

where dcr denotes the standard volume form on the unit (k 1)-sphere Sk-, and
where rS- is the (k 1)-sphere of radius r. Let L be an orbit closure in N x Sk- l,
and for each 0 < r < 1, let r" N x S- --+ N rS-1 be the diffeomorphism
defined in Proposition 1.3. Then vol(r(L)) > rk-l vol(L), and so q(x, rcr) <
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r-(k- 1) (x, or), where x 6 N and cr 6 Sk- 1. Therefore

f01 q d volV
xrSk-i

q d volN dark-dr

r-(-)q d VO1N dcrrk-dr

q d volu da] dr.

By our inductive hypothesis, the integral of q over N x S- is finite, and therefore
the integral of over V is finite. 121

Define p: C(B) C by p(g) fM rc*(g)q dtx, where zr*" C(B) --> C(M) is
the map induced from zr" M --+ B. In light of Proposition 2.1, p is a bounded linear
functional on C(B). Since p is obviously positive, it determines a Borel measure v
on B, and we have p(g) fM r*(g)P dlz fB g dv for all g in C(B).

For each f in C(M), define ,kf in 1-IbB L2(rr- (b)) by .f(b) fb, and let 17 be
the set

r/" B --> H L2(zr-(b)) ]b -> (rl(b), Lf(b)) is v-measurable for all f e C(M)].bB

L2(-1By Lemma 8.10 in [Ta] (I-IbeB (b)), 17) is a measurable field of Hilbert spaces
over B.

LEMMA 2.2. Let f be in C(M). There exists a continuousfunction h on M with
thefollowing properties:

(i) h is constant on the orbit closures of;
(ii) Ilfl12 Ilhl12;
(iii) Ilfbllz Ilhbll2for all b B.

Proof Letd denote the geodesic distance function on M. Fix P0 in M, and choose
an increasing sequence {tn} of positive real numbers such that d(po, Ct, (P0)) < +/- for

n
each natural number n and such that limn t cxz. For each n, let Tn ([t])2,
where [t,] is the smallest integer greater than or equal to t,. Let F ff, and define
a function Fn by the formula

Fn(x)
T.

Tn+ .=

Since F is a positive function, it is evident from the definition that F I1 IIffll
f 112 and that Fn I1 (ff) I1 f I1 for all b in B. Clearly the collection
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Fn} is pointwise bounded, and a simple argument using the triangle inequality and
the uniform continuity of F shows that Fn is equicontinuous. By the Arzelta-Ascoli
theorem, there exists a subsequence Fnk that converges uniformly to a continuous
function H1; I claim that H1 is constant on the set (P0).

Note that every point x in (P0) is arbitrarily close to a point of the form Cm,,, (X),
rnk

where 0 < rn < Tn. Therefore, to prove the claim, it suffices to show that given e > 0,
we can choose k so large that IFn (4"" (P0)) Fn, (P0)I < e for all 0 < m < Tnk.

Tn
Now,

Fn, (,., (PO)) Vn, (PO)
Tn Tn + l

m-1 Tnk
F,o po)) F,.po))

=0 Tnk =m Tnk

Cancelling the first and fourth terms and reindexing the second term, we get

Fn, (Omt., (Po)) Fn, (Po)
Tn

[m m-1

Tnk’-I Ij=l F(ftnk+nk(pO,,- EF(jtnk(po))j=O
<

Tn,+l F(tn,+ (Po)) F(po)

Choose 6 so that d(y, z) < 6 implies IF (y) F (z)l < for all y and z in M. Next,

211FIlTk/1 and d(po, t.k (Po)) < 6. The latter requirementchoose k so large that <

implies that d(t. + J’.__x (Po),

_
(Po)) < 6 for each j, and hence F(4t. + J, (Po))

Tn Tn Tn

Therefore, we haveF(,.._ (Po))I < .
Fn, (,. (po)) F., (po)

Tn [ F(t., rntn (Po))- F(po)<
rn,+l +.

[2IIFII + (m 1)]<
Tn,-]-I

< +=,

+(m- 1)

and thus H1 is constant on (Po).
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Choose a dense sequence {Pn of points in M. At the beginning of this proof, we
constructed the function H1 from the initial function F and point P0; replace F by
H1 and P0 by pl, and repeat this construction to obtain a function H2. Continue this
process; that is, replace F by Hn and P0 by Pn to obtain a function Hn+l. The sequence
Hn is pointwise bounded and equicontinuous, so we may again apply Arzel?-Ascoli

to show that there is a subsequence Hnk that converges uniformly to a continuous
function H. Let h ; I claim that h possesses the desired properties.

To show that h is constant on each orbit closure of , it of course suffices to show
that H is constant on the orbit closures. Fix e > 0, and choose 3 so that d(y, z) < 3
implies H(y) H(z)l < for all points y and z in M. Now choose y and z to be
arbitrary points of M that are in the same orbit closure of , and choose a natural
number so that d(y, p) < 3. Since y and z are in the same orbit closure, we can
choose a point q, in (p,) with d(z, q,) < 3. Then

IH(y) H(z)l _< IH(y) H(p,)I + IH(p,) H(q,)l + IH(q,) H(z)l

< + IH(p,) H(q,)l + .2

But H(p,) H(ql)l limk__, Hnk (p,) Hnt (q,)l, and since Hn (Pl) nnk (qi)
for nk > l, we have IH(y) H(z)l < e, and hence H is constant on orbit closures.
To see that (ii) holds, observe that H is the norm limit of functions Hn with the
same L norm as F, and so Ilfll2 IlFll Ilnlll ]lhll2. Similarly, ]lfbllz
Fb II1 Hb II1 IIhb 112.

PROPOSITION 2.3. Let fB L2(zr-1 (b)) dv be the direct integral ofthe measurable
field (Hb.B L2(zr-(b)), F),anddefine A: C(M) -- f LZ(zr-(b))dv by A(f)
,f Then A extends to a unitary operatorfrom LE(M) to f LE(zr-l(b))dr.

Proof Since A maps C(M) ontoadensesubsetoffff L2(zr-(b))dv, itsuffices
to show that Ilfl]2 II.fl12 for all f in C(M). Fix f C(M), let h be the function
constructed in Lemma 2.2, and choose g in C(B) so that h zr*(g). Then from
Lemma 2.2 and the definitions of q and v, we have the following string of equalities:

Ilfll Iih1122 ft Ih(p)12

fM Ih(p)12vl(zr-l(zr(P))q

fM zr* ([gl2vol(zr-1 (.))) d/z

f Ig(b)12vol(zr -1 (b)) dv
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fBf Ihl2dlzbdv
-(b)

f. Ilhbl[22dv

f Ilfbll 22dv

fa IIf(b)ll dv

IlZs 112 I-’i
2

We now look at Toeplitz algebras associated to the orbit closures of . For each
b in B, acts on zr -1 (b), and the restriction of to zr -1 (b) defines a one-parameter
group of unitaries on L2(r -1 (b)). Let Db be the infinitesimal generator of this group,
and let pb I X_,o)(Db) Note that if r-l(b) is a single point, then Db O,
SO pb I X(-,o)(O) I.

Definition. Let b B. The Toeplitz algebra of restricted to :rr-l(b), de-
noted 7-b(), is the C*-subalgebra of (LE(Tr-l(b))) generated by {pbMgpb: g
C(zr- (b))}, where Mg is the operator of multiplication by g on LE(Tr -1 (b)).

For each f in C(M), let Of HbEB ,-]-b(cp) be defined as Of(b) pbMfb pb, and
let (R) be the collection of all finite linear combinations and products of the Of’s.

PROPOSITION 2.4. For each 0 in (R), the map from B to [0, c) given by b -II0(b) I1 is continuous.

Proof. It suffices to show that for each f in C(M), themapb - IlOf(b)llo iscon-
tinuous. Note that IlOf(b)ll IIPbMf ebll <_ IIPblIIIMfIIIIPblI Ilfbll.

b b bOn the other hand, the map P MfP -> f extends to a surjective homomorphism
or" Tb (p) C (zr -1 (b)) (trivially true when rr- (b) is a single point, and true by [JK]
otherwise), whence IlOf(b)ll--IlebMfebll > IIr(pbMfPb)ll Ilfbll.
Therefore I[Of(b)ll Ilfbll, and the map b -> Ilfbll is obviously continuous.

From Proposition 2.4, we see that (HbEB "Tb(), ) is a continuous field of C*-
algebras over B, where (R) is the collection of continuous vector fields generated by
(R) (see [Di], Propositions 10.2.3 and 10.3.2).

THEOREM 2.5. The map PMfP - Of extends to a C*-algebra isomorphism
from 7-() to the C*-algebra ofsections of (I-Ibt (Tb(), ).
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Proof Let W" L2(M) -- f L2(zr-l (b)) dv be the unitary operator constructed
in Proposition 2.3. Then WMfW* f Mfb dv for every f C(M). In addition,
W intertwines the action of on M with its action on the orbit closures of , and
hence WDW* f Dbdv and WPW* f P’dv. Therefore WPMfPW*
f PMfbP dr, and W implements the desired isomorphism. []

We can now state and prove the main result of this paper.

THEOREM 2.6. Let be an isometricflow on a compact manifold M. Then the
Toeplitz algebra 7"() does not depend upon the Riemannian metric. That is, if
is an isometric flow under two metrics gl and g2, then the corresponding Toeplitz
algebras are isomorphic.

Proof Let 1 and 2 denote with the metrics g and g2, respectively. To
prove the theorem, it suffices to show that the continuous fields (I-IbB Tb(),-)
and (HbB /-b (2), ) are isomorphic. To this end, first note that if 7/"-1 (b) is a point,
then Tb(l) /-’b((I)2)" Nw suppse that zr-l (b) is atrus, andlet/Zlb and/zbbethe2
measures on 7r- (b) that are associated to gl and g2, respectively. Then Proposition
1.2 implies that zb2 CblZbl for some constant Cb, and therefore multiplication by

defines a unitary operator from L2(rr -1 (b), gl) to L2(rr- (b), g2); this unitary
operator induces an isomorphism between Tb(do) and Tb(2). In addition, this
family of isomorphisms maps the set of sections tO into itself, so by Proposition
10.2.4 in [Di], the continuous fields are isomorphic. [3
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