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Abstract

We formulate and prove an analog of the Hopf Index Theorem for Riemannian foliations. We compute th
Euler characteristic of a closed Riemannian manifold as a sum of indices of a non-degenerate basic ve
at critical leaf closures. The primary tool used to establish this result is an adaptation to foliations of the
deformation method.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Euler characteristic is one of the simplest homotopy invariants of a smooth, closed manifo
begin by briefly reviewing some standard theorems of topology which establish the equivalence
ways of computing it. Then we proceed to new analogs for Riemannian foliations, where more
will be supplied.

For a smooth, closed manifoldM , we define the Euler characteristic as

χ(M)=
∑

(−1)k dimHk(M),

whereHk is de Rham cohomology. According to classical results of de Rham the spacesHk(M) are
finite-dimensional and homotopy invariant; thus the definition ofχ(M) makes sense and is homoto
invariant. An alternate route to the finite dimensionality ofHk and the topological invariance ofχ goes
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by way of theČech–de Rham double complex, which computes the de Rham cohomology and p
an isomorphism with thěCech cohomology of a finite good cover ofM (here “good” means that non
empty finite intersections are diffeomorphic toR

n). Using this isomorphism one can define the Eu
classe(E) ∈Hn(M) of an oriented(n− 1)-sphere bundleE→M . The vanishing of the Euler class
a necessary, but not in general sufficient, condition for the bundle to have a section. In the casee is
the Euler class of the sphere bundle associated with the tangent bundle ofM ,

∫
M
e= χ(M). A corollary

of this is the Hopf Index Theorem:χ(M) is the sum of the indices of the singular points of any n
degenerate vector field onM . Details can be found in [2].

Suppose that a smooth, closed manifoldM is endowed with a smooth foliationF . A form ω on M

is basic if for every vector fieldX tangent to the leaves,i(X)ω = 0 and i(X)(dω) = 0, wherei(X)

denotes interior product withX. The exterior derivative of a basic form is again basic, so the basic f
are a subcomplexΩ∗

B(M, F) (or Ω∗
B(M)) of the de Rham complexΩ∗(M). The cohomology of this

subcomplex is thebasic cohomology H ∗
B(M,F).

SupposeF has codimensionq. Thebasic Euler characteristic is defined as

χB(M,F)=
q∑

k=0

(−1)k dimHk
B(M,F),

provided that all of the basic cohomology groups are finite-dimensional. AlthoughH 0
B(M,F) and

H 1
B(M,F) are always finite-dimensional, there are foliations for which higher basic cohomology g

can be infinite-dimensional. For example, in [6], the author gives an example of a flow on a 3-ma
for which H 2

B(M,F) is infinite-dimensional. Therefore, we must restrict our investigation to a cla
foliations for which the basic cohomology is finite-dimensional. A large class of foliations with
property areRiemannian foliations; a foliation is Riemannian if its normal bundle admits a holonom
invariant Riemannian metric. There are various proofs that the basic cohomology of a Riem
foliation on a closed manifold is finite-dimensional; see for example [4] for the original proof u
spectral sequence techniques or [7] and [12] for proofs using a basic version of the Hodge theore

In Section 2 we develop a basic version ofČech–de Rham cohomology along the lines of [2]. T
assumption that the foliation is Riemannian is needed to obtain basic partitions of unity and th
Mayer–Vietoris sequence. For the basic Poincaré lemma we further assume that all of the lea
closed. Examples are given to show that these conditions are necessary. The basicČech–de Rham
theorem establishes the equivalence ofH ∗

B and Ȟ ∗
B , if all the leaves are closed. Examples show t

the basicČech cohomology and the basic de Rham cohomology are not necessarily isomorp
Riemannian foliations in general.

A primary goal of this paper is to establish a foliation version of the Hopf Index Theorem. How
the standard proofs of this theorem do not carry over, even for Riemannian foliations. The prob
there are many Riemannian foliations that have a nonzero basic Euler characteristic, yet hav
top-dimensional basic cohomology (for example, a non-taut Riemannian foliation [16] can posse
property). Thus it is impossible for these foliations to have any sort of basic Euler class that
integrated to obtain the basic Euler characteristic (we do mention that fortaut Riemannian foliations
one can define a nontrivial basic Euler class [18]).

To establish a Hopf Index Theorem for Riemannian foliations, another approach is require
approach we use, which is in Section 3, involves a modification of the Witten deformation of the de
complex to the foliation case. LetV be a basic vector field on(M,F); i.e., a vector field onM whose
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flow maps leaves to leaves (see [11] or [16], for example). In analogy with what is needed in the c
Hopf Index Theorem, we require thatV satisfy a transverse nondegeneracy condition, which we caF -
nondegeneracy. We say that a leaf closure iscritical for V if V is tangent toF at that leaf closure. Whe
V is F -nondegenerate, the critical leaf closures are necessarily isolated. For each critical leaf cloL,
we define theindex indL(V ) of V atL; just as in the classical case, this index is always±1.

Next, letdB be the restriction of the exterior derivative to basic forms, letδB denote the formal adjoin
of dB , and for each real numbers, define the basic Witten differential

DB,s = dB + si(V )+ δB + sV �∧ :Ω∗
B(M)→Ω∗

B(M).

We show that the index ofDB,s is independent ofs, and examine the behavior of this operator ass goes
to infinity. In the limit, the formula for the index ofDB,s concentrates at the critical leaf closures. We n
establish the necessary analytic properties of the basic Witten deformation. This leads to Theore
Let (M,F) be a Riemannian foliation, and letV be a basic vector field that isF -nondegenerate. Give
a critical leaf closureL, let OL = OL(V ) denote the orientation line bundle ofV atL (Definition 3.1).
Then

χB(M,F)=
∑

Lcritical

indL(V )χB(L,F,OL),

where χB(L,F,OL) is the alternating sum of the dimensions of the certain cohomology gr
H ∗

B(L,F,OL) associated to the foliationF restricted toL (Definition 3.17). We remark that in man
simple cases,χB(L,F,OL) = 1, whence our formula takes on the precise form of the classical
Index Theorem.

One important implication (Corollary 3.20) of this result is that if(M,F) admits a basic vecto
field that is never tangent to the leaves, thenχB(M,F) = 0. For example, this implies that ifF
has codimension 1 or 2 and has such a basic vector field, thenM has infinite fundamental grou
(Corollary 3.21).

2. Basic Čech and de Rham cohomologies

Let M be a compact manifold, and letF be a Riemannian foliation onM . Let J be a finite ordered
set, and letU = {Uα}α∈J be a finite basic open cover ofM ; i.e., a finite open cover in which each s
Uα is a union of leaves. Such an open cover always exists in this case, because tubular neighb
of leaf closures are unions of leaves. Forα0, α1, . . . , αn an increasing sequence of indices defi
Uα0α1...αn =

⋂n
i=0Uαi , and letΩp

B(Uα0α1...αn) be the collection of basicp-forms onUα0α1...αn . Define

δ :
∏

Ω∗
B(Uα0α1...αk )→

∏
Ω∗

B(Uα0α1...αk+1)

by the formula

(δω)α0α1...αk+1 =
k+1∑
i=0

(−1)iωα0...α̂i ...αk+1,

where each form is restricted to the appropriate subset. It is convenient to extend the index se
product to includeall sequences of the appropriate length fromJ , regardless of order or repetitio
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and to adopt the convention that interchanging indices of a component introduces a minus sign
example,ωα2α1 = −ωα1α2 for all α1 andα2 in J . It is straightforward to check that the definition ofδ

respects the sign convention andδ2= 0.

Definition 2.1. A basic partition of unity subordinate to a basic open cover{Uα} is a partition of unity
{ρα} consisting of basic functionsρα; that is, functions that are constant on leaves.

Lemma 2.2. Every basic open cover of a Riemannian foliation admits a basic partition of unity.

Proof. Endow the manifold with a bundle-like metric, and choose any partition of unity subord
to the basic cover. Orthogonally project the functions in the partition of unity to the space of
functions; the smoothness and other desired properties of the resulting functions are guarantee
results of [12]. ✷
Theorem 2.3 (Basic Mayer–Vietoris sequence).The sequence

0−→Ω∗
B(M)

r−→
∏

Ω∗
B(Uα0)

δ−→
∏

Ω∗
B(Uα0α1)

δ−→ · · ·
is exact, where r denotes the restriction map.

Proof. The proof of this theorem is the same as the proof of Theorem II.8.5 in [2], with forms rep
by basic forms and partitions of unity replaced by basic partitions of unity.✷
Remark 2.4. If the foliation is not Riemannian, it may not admit basic partitions of unity, an
such cases, the Mayer–Vietoris sequence may fail to be exact. To describe such an exam
begin with some notation. For each real numbert and open interval(a, b), let Lt

(a,b) be the curve
{(x, 1

x−a + 1
b−x + t) | a < x < b} in R

2. Foliate [0,1) × R by the linesx = 1/3 andx = 2/3, along
with Reeb componentsLt

(0,1/3),L
t
(1/3,2/3), andLt

(2/3,1), wheret ranges over all real numbers. LetT
2⊂C

2

be the 2-torus, and consider the open mapp : [0,1) × R→ T
2 given byp(x, y) = (e2πix,e2πiy). Then

the image underp of our foliation on[0,1)× R determines a foliation onT2. Let U0 = (0,2/3)× R,
U1 = (1/3,1) × R, andU2 = ([0,1/3) ∪ (2/3,1)) × R. There does not exist a basic partition of un
subordinate to the basic open cover{p(U0),p(U1),p(U2)} of T

2, because the only basic functions a
the constant ones. To see that the Mayer–Vietoris sequence is not exact in this example, first note
intersection of all three sets in our basic open cover is empty. Therefore, for basic functions, we h
following piece of the Mayer–Vietoris sequence:

C∞B
(
p(U0)

)⊕C∞B
(
p(U1)

)⊕C∞B
(
p(U2)

)
δ−→ C∞B

(
p(U0∩U1)

)⊕C∞B
(
p(U1∩U2)

)⊕C∞B
(
p(U0∩U2)

)→ 0.

The mapδ here is given by the formulaδ(c0, c1, c2)= (c1−c0, c2−c1, c2−c0), which is not surjective
since there is a nontrivial relation among the three components of the image ofδ.

Remark 2.5. Even if a basic open cover of a (necessarily) non-Riemannian foliation does not
basic partitions of unity, it is possible for the Mayer–Vietoris sequence to be exact. One such e
is as follows; we maintain the notation of the previous remark. Foliate[0,1) × R by leaves of two
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sorts: straight linesLa = {(a, y) |y ∈ R} for 0 � a � 1/2, and a Reeb componentLt
(1/2,1), t ∈ R. As

in the previous remark, the image underp of this foliation of [0,1) × R determines a foliation onT2.
Let U0 = (0,1)× R andU1 = ([0,1/4) ∪ (1/2,1))× R. Then there does not exist a basic partition
unity subordinate to the basic open cover{p(U0),p(U1)} of T

2, because every basic function on t
Reeb component must be constant. In spite of this, it is straightforward to check that the Mayer–V
sequence associated to this basic open cover is exact.

There are various cohomology theories that one can associate to the foliationF . Note that the exterio
derivativedω of a basic formω is basic, and therefore the collection of basic forms ofF is a subcomplex
of the de Rham complex. The cohomology of this subcomplex is denotedH ∗

B(M,F), and is called the
basic de Rham cohomology of (M,F).

Another cohomology theory can be defined for any basic open coverU of (M,F). For eachp � 0,
define

C
p

B(U ,R)= ker
(
d :

∏
Ω0

B(Uα0...αp)→
∏

Ω1
B(Uα0...αp)

)
.

It is easy to check that(C∗B(U ,R), δ) is a cochain complex; we declare its cohomologyȞ
p

B (U ,R) to be
thebasic Čech cohomology of the basic open coverU .

Our immediate goal is to show that for “nice” coversU , basic de Rham cohomology and basicČech
cohomology are isomorphic. To do this, we need a foliation version of the Poincaré lemma.

Proposition 2.6 (Basic Poincaré lemma).Let F be a Riemannian foliation of M , suppose that all of the
leaves of F are closed, and equip M with a bundle-like metric. Let L be a leaf ; for ε > 0, let U be
the tubular neighborhood of L consisting of points that are a distance less than ε from L. Then, for ε

sufficiently small and for k > 0, every closed basic k-form on U is exact.

Proof. First observe that since we have givenM a bundle-like metric, the tubular neighborhoodU is a
union of leaves, and so the restrictionF |U of F to U makes sense. Chooseε small enough so thatU
misses the cut locus ofL; sinceM is compact andL is closed, this can always be done. Fixx ∈ L, and
let D be the exponential image of the ball of radiusε in the normal spaceNxL. Then

Ωk
B(U)∼= {

η ∈Ωk(D) | η is holonomy invariant
}
.

The holonomy ofF acts by a finite subgroupΓ of the orthogonal group [11], so we have

Ωk
B(U)∼= {

η ∈Ωk(D) | g∗η= η for all g in Γ
}
,

and this isomorphism commutes with the exterior derivative. Supposeω ∈ Ωk
B(U) is closed, and le

η ∈Ωk(D) be the closed form associated toω via the isomorphism above. SinceD is diffeomorphic to
Euclidean space, there exists by the ordinary Poincaré lemma a formµ ∈Ωk−1(D) such thatdµ = η.
Now, µ may not beΓ -invariant, but the averaged formζ = 1

|Γ |
∑

g∈Γ g∗µ is, anddζ also equalsη.
Thereforeη, and henceω, is exact. ✷
Definition 2.7. A basic good cover of(M,F) is a basic open coverU of (M,F) with the feature that the
basic cohomology of each intersection is trivial.



324 V. Belfi et al. / Differential Geometry and its Applications 18 (2003) 319–341

ain a
nce

. 97],
the

e

on
f

en
When all of the leaves ofF are closed, the basic Poincaré lemma implies that we can obt
basic good cover by covering each leaf by a sufficiently small tubular neighborhood. In fact, siM

is compact, we can choose afinite basic good cover ofM .

Theorem 2.8 (BasicČech–de Rham theorem).Suppose F is Riemannian and consists entirely of closed
leaves, and suppose that U is a basic good cover of M . Then

H ∗
B(M,F)∼= Ȟ ∗

B(U ,R).

Proof. For eachp,q � 0, let Cp(U ,Ωq

B) be the collection of basicq-forms restricted to(p + 1)-fold
intersections, and define a double complex

C∗(U ,Ω∗
B)=

⊕
p,q�0

Cp
(
U ,Ωq

B

)
.

The horizontal differential is the mapδ defined above, and the vertical differential is(−1)pd, whered is
the exterior derivative. We compute the cohomologyH ∗(U ,Ω∗

B) of this double complex in two ways.
First, augmentC∗(U ,Ω∗

B) by the column
⊕

q�0Ω
q

B(M), and then map into
⊕

q�0C
1(U ,Ωq

B) by the
restriction mapr . By Theorem 2.3, the rows of the augmented double complex are exact. By [2, p
the cohomologyH ∗(U ,Ω∗

B) of the original double complex is isomorphic to the cohomology of
initial column, which is precisely the basic de Rham cohomologyH ∗

B(M,F) of (M,F).
Second, augment the original double complex with the row

⊕
p�0C

p

B(U ,R). Then the columns of th

new double complex are exact, and thusȞ ∗
B(U ,R) is also isomorphic toH ∗(U ,Ω∗

B). ✷
Corollary 2.9. The group Ȟ

p

B (U ,R) is independent of the choice of basic good cover U .

Corollary 2.10. If F is a Riemannian foliation and consists entirely of closed leaves, then H ∗
B(M,F) is

finite-dimensional.

In fact, the groupH ∗
B(M,F) is finite-dimensional for any Riemannian foliationF , as mentioned in

the introduction.

Remark 2.11. The basicČech–de Rham theorem is not necessarily true if the Riemannian foliatiF
has some non-closed leaves. Consider the foliation of the 2-torusT

2 foliated by translates of a line o
irrational slope. In this case, the only nonempty basic open set isT

2 itself, so there is only one basic op
coverU to choose. ClearlyȞ 1

B(U ,R)∼= 0, whereas it is straightforward to check thatH 1
B(M,F) ∼= R.

Note also that sinceH 1
B(M,F) is nontrivial, the basic Poincaré lemma fails in this example.

3. Witten deformation of the basic de Rham complex

For the remainder of this paper,F is a Riemannian foliation on a smooth compact manifoldM , and
M is equipped with a bundle-like metric;ωvol will denote the volume form associated to the metric.

Let V be a smooth vector field on(M,F). We say thatV is a basic vector field if for every vector
field X in TF , [V,X] is in TF . If in addition V (x) is in NxF (the normal space to the leaf atx) for
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everyx ∈M, we will say thatV is abasic normal vector field. Basic normal vector fields always exis
the projection of any basic vector field ontoNF is such a vector field. Associated to a basic vector fielV

is a one-parameter family of diffeomorphisms ofM that preserves the foliationF .
Let V be a basic vector field. LetL be a leaf closure with the property thatV is tangent to every lea

in L; such a leaf closure will be called acritical leaf closure for V . We note in passing that if a basic vec
field is tangent to the foliation at any point, it is in fact tangent to every leaf in the leaf closure. D
the linear part of V atx ∈ L to be the linear mapVL :NxL→NxL defined byX �→ π [V, �X]x , where�X
is any vector field that restricts toX at x, andπ :TxM→ NxL is the projection map. The basic vect
field V will be calledF -nondegenerate if the linear part ofV is an isomorphism at each point of eve
critical leaf closure. Every Riemannian foliationF admitsF -nondegenerate basic vector fields; sim
examples are gradients of basic Morse functions (see [1]). A critical leaf closure for aF -nondegenerate
basic vector fieldV is necessarily isolated. We say that a nondegenerate vector fieldV has index 1
(respectively,index −1) at a critical leaf closureL if the determinant of the linear transformationVL is
everywhere positive (respectively, negative) onL. Clearly, ifV is F -nondegenerate, then at each criti
leaf closure,V must have either index 1 or−1.

Given any pointx0 of a critical leaf closureL, choose orthonormal coordinatesȳ = (y1, . . . , yq̄)

for the normal spaceNx
�F = NxL, and extend these coordinates to orthonormal coordinatesy =

(y1, . . . , yq̄ , yq̄+1, . . . , yq) for NxF . Let x = (x1, . . . , xp) be geodesic normal coordinates for the l
near x0. The coordinates(x, y) parametrize a tubular neighborhood ofL near x0 via the normal
exponential map. It is elementary to check that we may writeV near x0 as an orthogonal sum
V = V1+ V2 + V3, whereV1 is tangent toF , V2(y) =∑q̄

i=1α
i(y) ∂

∂yi
, andV3(y) =∑q

j=q̄+1β
j (y) ∂

∂yj
.

The linear transformationVL is given by multiplication by thēq × q̄ matrix ( ∂α
i

∂ym
(y))1�i,m�q̄ on NxL,

so that the index ofV is simply the sign of the determinant of that matrix. We remark that ifV is the
gradient of a basic functionf , thenVL is the Hessian off restricted to the normal ball, andV1= V3= 0.

Observe that a basic normal vector fieldV (henceV1 = 0) is determined on a tubular neighborho
U of the leaf closureL by its values on a transversēq-dimensional ball. LetB(δ) be the image of a
ball of radiusδ under the normal exponential map exp⊥

x :NxL→ U at x ∈ L, so thaty = (y1, . . . , yq̄)

are exponential coordinates for this ball. The holonomy group atx is represented onB(δ) by a groupΓ
of orthogonal transformations (see [11]), so that we may identify basic normal vector fields onU with
normal vector fields restricted toB(δ) that are equivariant with respect to the action ofΓ . That is, for
anyg ∈ Γ , every basic normal vector field restricted toB(δ) has the form

V (y)=
q∑

i=1

vi(ȳ)
∂

∂yi
=


 v1(ȳ)

...

vq(ȳ)




and satisfies

g


 v1(ȳ)

...

vq(ȳ)


=


 v1(gȳ)

...

vq(gȳ)


 .

Note that the notationgȳ denotes the restriction of the action ofg on NxF to the subspaceNxL. This
makes sense, because elements of the holonomy group map vector fields orthogonal toL to other vector
fields orthogonal toL. As a consequence, the action ofΓ commutes with the action ofVL onNxL.
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Definition 3.1. Let V be a basic vector field that has a nondegenerate zero on a critical leaf closL.
At each pointx ∈ L, let VL,x :NxL→ NxL be the linear part ofV at x. SinceVL,x is invertible, it can
be written as the (uniquely determined) polar decompositionVL,x = PxΘx , wherePx = √

V ∗L,xVL,x is
positive and symmetric, andΘx = P−1

x VL,x is an isometry. The orientation line bundleOL =OL(V ) of V
atL is the orientation bundle of the subbundle ofNL spanned by the eigenvectors ofΘx corresponding
the eigenvalue−1.

Remark 3.2. It can be shown thatOL is a smooth line bundle. Observe that in the context of this pa
the singularity of the subbundle is not an issue, since the eigenvalues ofΘx are constant asx moves along
the leaves. We also observe that ifV =∇f for a Bott–Morse functionf , then this orientation line bundl
corresponds to the orientation line bundle of the subbundle of negative directions off .

We now prove a result that puts a basic vector field into standard form.

Lemma 3.3. Let V be a basic vector field that is F -nondegenerate, and let L be a critical leaf closure.
Let Tδ(L) denote the tubular neighborhood of radius δ around L, and assume that δ is chosen so that
Tδ(L) does not contain any other critical leaf closures and misses the cut locus of L. Then there is a
basic normal vector field Ṽ and a δ̃ with 0< δ̃ < δ such that:

(1) Ṽ = V outside Tδ(L);
(2) L is the only critical leaf closure of Ṽ in Tδ(L);
(3) The index of Ṽ at L is the same as the index of V at L;
(4) Ṽ =∇f on Tδ̃(L), where f is a basic function whose Morse index (restricted to a normal ball at a

point of L) is even if the index of V is 1 at L and is odd if the index of V is −1 at L;
(5) The orientation line bundle of Ṽ at L is identical to the orientation line bundle of V at L.

Proof. Choose coordinates(x, y) = (x1, . . . , xp, y1, . . . , yq̄ , yq̄+1, . . . , yq) near a pointx ∈ L as de-
scribed in the paragraphs above. As before, we writeV in the formV = V1 + V2 + V3, whereV1 is
tangent toF , V2(y)=∑q̄

i=1α
i(y) ∂

∂yi
, andV3(y)=∑q

j=q̄+1β
j (y) ∂

∂yj
. Given anyδ′ such that 0< δ′ < δ,

we may multiply the tangent componentV1 by a radial basic function that is zero inTδ′(L) and is 1
outsideTδ(L). In doing so, we preserve the index and orientation line bundle and yet restrict to th
whereV is a basic normal vector field. We now assume thatV has already been modified in this wa
Next, the basic normal vector fieldV is determined onTδ′(L) by its restriction to a normal ballB(δ′) with
the ȳ = (y1, . . . , yq̄ ) coordinates, and we may writeV (ȳ)=∑q̄

i=1 v
i(ȳ) ∂

∂yi
+∑q

j=q̄+1v
j (ȳ) ∂

∂yj
onB(δ′).

Again, we may multiply the component
∑q

j=q̄+1v
j (ȳ) ∂

∂yj
by a similar radial basic function if necessa

so that this component vanishes on a givenB(δ′′) such that 0< δ′′ < δ′, without changing the relevan
properties ofV . For the remainder of this proof, assume that we have already modifiedV so that it is
in the formV =∑q̄

i=1v
i(ȳ) ∂

∂yi
restricted toB(δ), choosing a slightly smallerδ if necessary. It follows

thatV (ȳ) = VL(ȳ)+ O(‖ȳ‖2) on B(δ). Givenx ∈ L, we writeVL :NxL→ NxL in terms of its polar
decompositionVL = PΘ . Let Γ be the closed subgroup of isometries onNxL induced from the repre
sentation of the holonomy group atx onNxL. For everyg ∈ Γ , gVL = VLg, whenceV ∗Lg

−1= g−1V ∗L .
This in turn implies that everyg ∈ Γ commutes withP andΘ . LetPt be defined byPtvi = λi(t)vi on the
λi-eigenspace ofP , where eachλi(t) is any smooth positive function such thatλi(0)= λi andλi(1)= 1.
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Since everyg ∈ Γ andP have simultaneous eigenspaces, everyg ∈ Γ also commutes with eachPt .
Thus, the smooth, one-parameter family of transformations{Tt = PtΘ} is a deformation ofVL (t = 0)
to an orthogonal transformationΘ (t = 1) that has constant index (that is, the sign of the determina
the linear transformation does not change). Next, sinceΘ is orthogonal, there is a complex orthogon
basis{wk} of NxL ⊗ C consisting of eigenvectors such thatΘwk = eiθkwk, where 0� θk < 2π . If θk
is 0, thenΘ acts by the identity on span{Rewk, Imwk}. If θk is π , thenΘ multiplies each vector in
span{Rewk, Imwk} by−1. If θk != 0 andθk != π , thenΘ acts by a rotation ofθk on span{Rewk, Imwk},
which in this case is necessarily 2-dimensional. We letΘ0 = Θ and define the transformationΘt for
0< t � 1 by

Θt(wk)=


wk if θk = 0,
−wk if θk = π,

ei(1−t )θkwk otherwise.

The smooth, one-parameter family of transformations{Θt} is a deformation of the orthogon
transformationΘ (t = 0) to a transformationΘ1 (t = 1) that has constant index. Observe that si
eachg ∈ Γ commutes withΘ0, the obvious action ofg onNxL⊗C satisfiesg(wk)= eiαkwk for some
αk ; it follows that g commutes with eachΘt . The final transformationΘ1 may be described in a re
orthogonal basis as a diagonal matrix whose diagonal consists of 1’s and(−1)’s; this transformation is
the linear part of a vector field of the form

∑q̄

i=1±yi ∂
∂yi

, where theyi are geodesic normal coordinates

exp⊥(NxL) corresponding to that particular basis. We also observe thatf (ȳ) := 1
2

∑q̄

i=1±(yi)2 is then a
basic function that is well-defined on a small neighborhood ofL, and the linear part of∇f (ȳ) at x ∈ L

is Θ1(ȳ)+O(‖ȳ‖2). Note that we may extendf to be a basic function on all of(M,F) by multiplying
by a radial cutoff function and extending by zero. Combining the two deformations described abo
see thatVL may be smoothly deformed to aΓ -equivariant transformation of the formΘ1 in such a way
that the index is unchanged throughout the deformation.

The argument that follows is somewhat similar to that found in [5]. Let{Yt :NxL→NxL} be a smooth
one-parameter family ofΓ -equivariant transformations constructed above such thatY0 = VL andY1 is
the linear part of

∑q̄

i=1±yi ∂
∂yi

. Thus eachYt(ȳ) is a vector field that is well-defined in a sufficient
small tubular neighborhood of the leaf closureL. Next, letZt(ȳ)= h(t)(∇f (ȳ)− Y1(ȳ)), with Y1 and
∇f as above andh :R→ R a smooth positive function such thath(t) = 0 for t � 0 andh(t) = 1 for
t � 1. Because of the remarks above,Zt(ȳ)=O(‖ȳ‖2) for all t . Let η1 be a radial (and therefore basi
cutoff function that is 1 in anr1-neighborhood ofL and 0 outside an 2r1-neighborhood ofL (r1 will be
chosen shortly). Then forr1 sufficiently small,η1(ȳ)(Yt(ȳ)+Zt(ȳ)) is a well-defined basic vector fiel
on (M,F). Let the basic vector fieldX1

t be defined by

X1
t = η1(Yt +Zt)+

(
1− η1

)
V,

so that

X1
t (ȳ)= η1(ȳ)(Yt − Y0)(ȳ)+ Y0(y)+O

(‖ȳ‖2
)
.

Observe thatX1
t is a smooth, one-parameter family of basic vector fields that agree withV outside a

2r1-neighborhood ofL, andX1
1 =∇f inside ar1-neighborhood ofL. Let m1= inf‖ȳ‖=1,0�t�1‖Yt(ȳ)‖,

and letm2 = sup‖ȳ‖=1,0�t�1‖ d
dt
Yt (ȳ)‖. Observe that 0< m1 < ∞ and 0� m2 < ∞. Therefore, if
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t1 <
m1
m2

�∞, then∥∥η1(ȳ)(Yt − Y0)(ȳ)+ Y0(ȳ)
∥∥ �

∥∥Y0(ȳ)
∥∥− ∥∥(Yt − Y0)(ȳ)

∥∥
�

∥∥Y0(ȳ)
∥∥− tm2

> 0

for t � t1, and henceη1(ȳ)(Yt − Y0)(ȳ) + Y0(ȳ) is invertible. Chooser1 > 0 so small that O(‖ȳ‖2) <

η1(ȳ)(Yt − Y0)(ȳ)+ Y0(ȳ) for ‖ȳ‖< 2r1; then the leaf closureL is the only critical leaf closure of th
basic vector fieldX1

t (ȳ) in the 2r1-neighborhood ofL. We continue by defining fortk � t � tk+1 := tk+ t1

Xk
t = ηk(Yt +Zt)+

(
1− ηk

)
Xk−1

t = ηk(ȳ)(Yt − Ytk )(ȳ)+ Ytk(ȳ)+O
(‖ȳ‖2

)
,

whereηk is 1 in anrk-neighborhood ofL and 0 outside a 2rk-neighborhood ofL (where 0< rk � rk−1 is
chosen as above). Eventually, we will find ak such thatXk

t = V outside a 2r1-neighborhood ofL and is
Xk

t = Yt + Zt inside ark-neighborhood ofL. Furthermore,L is the only critical leaf closure ofXk
t in a

2r1-neighborhood ofL, and the index ofXk
t atL is the same as the index ofV atL for 0� t � 1. Finally,

Xk
1 =∇f inside ark-neighborhood ofL.
Observe that if we let 2r1 � δ, δ̃ = rk , andṼ =Xk

1, then the first four properties are satisfied. Moreo
since the orientation line bundles ofYt andXk

t at L are constant int , the last property is satisfied a
well. ✷

We now proceed with a modified version of Witten’s deformation of the de Rham complex
[17] and [14]). LetV be a basic normal vector field, and leti(V ) :Ω∗

B(M)→ Ω∗
B(M) denote interior

multiplication with V . For a givens > 0, let dB,s = dB + si(V ) :Ω∗
B(M)→ Ω∗

B(M). Note thatdB,s
is the restriction of the differential operatords = d + si(V ) :Ω∗(M)→ Ω∗(M). The formal adjoint
of dB,s is δB,s = δB + sV �∧ :Ω∗

B(M) → Ω∗
B(M), where δB is the basic adjoint ofdB and V � is

the basic one-form〈V, ·〉. From [12], we know thatδB is the restriction of the differential operat
δ + ε :Ω∗(M)→ Ω∗(M) to basic forms, whereε :Ωi(M) → Ωi−1(M) is a zeroth-order operato
that involves mean curvature and Rummler’s formula. The operatorε has the additional property th
PεP = 0, whereP :L2(Ω∗(M))→ L2(Ω∗

B(M)) is the orthogonal projection. We define

DB,s = dB,s + δB,s :Ω∗
B(M)→Ω∗

B(M).

LettingDB = dB + δB andH = i(V )+ V �∧, observe that

D2
B,s = (DB + sH)2=D2

B + s(HDB +DBH)+ s2H 2.

The operatorH 2 = (i(V ) + V �∧)2 acts by multiplication by the basic function‖V ‖2. A simple
calculation showsZ′ :=H(d + δ + ε)+ (d + δ+ ε)H satisfies

Z′ =LV + (LV )
∗,B + (

d
(
V �

))∧+ ((
d
(
V �

))∧)∗,B
(3.1)=LV + (LV )

∗ +Z+ (
d
(
V �

))∧+ ((
d
(
V �

))∧)∗
,

whereLV = i(V ) d+d i(V ) denotes the Lie derivative in theV direction, the superscript∗,B denotes the
adjoint restricted to basic forms, andZ := ε ◦ V �∧+ V �∧ ◦ ε is a zeroth order operator. One can sh
using the Leibniz rule thatLV + (LV )

∗ commutes with multiplication by a function, so this opera
is also an operator of order zero. ThusZ′ is a differential operator of order zero, and it agrees w
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HDB +DBH on basic forms. Also note thatZ′ maps odd forms to odd forms and even forms to e
forms.

Observe thatD2
B = @

j

B = dBδB + δBdB on basicj -forms, the basic Laplacian. By the results
[12], this operator is essentially self-adjoint and has eigenvalues 0� λ

B,j

1 � λ
B,j

2 � λ
B,j

3 � · · · with
the property thatλB,jk � Ck2/n for some positive constantC and sufficiently largek (see [13] for
more precise asymptotics). Furthermore, the basic Hodge decomposition theorem (see [7,12]
that ker@B is finite-dimensional and that the space of basicj -forms decomposes orthogonally
imdB ⊕ im δB ⊕ ker@j

B . Letting @
j

B denote the Laplacian onj -forms, we have ker@j

B
∼= H

j

B(M,F).
This implies

χB(M,F)=
q∑

j=0

(−1)j dimH
j

B(M,F)

=
q∑

j=0

(−1)j dim ker@j

B

= index
(
DB :Ωeven

B (M)→Ωodd
B (M)

)
.

Next, letKj

B(t, x, y) denote the basic heat kernel onj -forms (see [7,12,13]), which is the fundamen
solution of the basic heat equation. More specifically, consider the bundleE→[0,∞)×M ×M where
E(t,x,y) =Hom(

∧j
(NyF)∗,

∧j
(NxF)∗). The basic heat kernel is a section ofE that is basic inx andy

and satisfies(
∂

∂t
+@

j

B,x

)
K

j

B(t, x, y)= 0 for t > 0;

lim
t→0+

∫
My

K
j

B(t, x, y)β(y)ωvol(y)= β(x) for all basicj -formsβ.

In [12, Theorem 3.5], the authors show thatK
j

B(t, x, y) exists, is smooth inx, y, and t , is unique, and
satisfies

K
j

B(t, x, y)= PxPyK̃
j (t, x, y)=

∞∑
k=1

e−λ
B,j
k tαk(x)⊗ α∗k (y),

where the set ofj -forms {α1, α2, . . .} is an orthonormal basis of basic eigenforms corresponding to
eigenvalues{λB,j1 , λ

B,j

2 , . . .}, and K̃j (t, x, y) is the heat kernel corresponding to the strongly ellip
operator@j + δε∗ + ε∗δ. The operator@j is the ordinary Laplacian onj -forms. Note that this sum i
finite if the leaves are dense. The mapPx is the orthogonal projection fromL2(Ω∗(M)) to L2(Ω∗

B(M))

in thex-variable. The mapPy is the induced basic projection on duals of forms in they-variable. In [12],
the authors show that this basic projectionP (or Px or Py ) maps smooth forms to smooth basic form
and the results in [12] also imply that the mapβ �→ Pβ is smooth. The main other fact used in the pro
of the results concerning the basic Laplacian and the basic heat kernel is that@

j

B is the restriction of
@j + εd + dε, which is a strongly elliptic operator defined on all forms.
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The standard heat kernel approach to index calculations carries over to the basic case. SinceDB maps
an eigenspace of@B in Ωeven

B (M) isomorphically onto an eigenspace inΩodd
B (M), we have

χB(M,F)= index
(
DB :Ωeven

B (M)→Ωodd
B (M)

)
=

q∑
j=0

(−1)j tr
(
e−t@

j
B

)

=
q∑

j=0

(−1)j
∫
M

trKj

B(t, x, x)ωvol(x)

=
∫
M

trKeven
B (t, x, x)ωvol(x)−

∫
M

trKodd
B (t, x, x)ωvol(x).

A similar analysis may be applied toDB,s =DB+ sH . The operatorD2
B,s =D2

B+ s(HDB+DBH)+
s2‖V ‖2 is the restriction of the strongly elliptic operator

(3.2)@′s =@+ εd + dε+ sZ′ + s2‖V ‖2

to basic forms, and the terms involvings are zeroth order. By a proof similar to that in [12], this opera
is essentially self-adjoint and has eigenvalues that grow at a rate similar to those of@B . The basic hea
kernelKeven

B,s (t, x, y) corresponding toD2
B,s exists, is smooth inx, y, andt , is unique, and satisfies

Keven
B (t, x, y)= PxPyK̃

even
s (t, x, y)=

∞∑
k=1

e−t λ
B,s,even
k αs

k(x)⊗
(
αs
k(y)

)∗
,

where the set{αs
1, α

s
2, . . .} is an orthonormal basis of even basic eigenforms corresponding t

eigenvalues{λB,s,even
1 , λ

B,s,even
2 , . . .} of D2

B,s, and K̃even
s (t, x, y) is the heat kernel corresponding to t

strongly elliptic operator@even+ δε∗ + ε∗δ + s(Z′)∗ + s2‖V ‖2. Similar results are true forD2
B,s on

odd forms. Again, we have thatDB,s maps an eigenspace ofD2
B,s in Ωeven

B (M) isomorphically onto an
eigenspace inΩodd

B (M), so that

index
(
DB,s :Ωeven

B (M)→Ωodd
B (M)

)
(3.3)=

∫
M

trKeven
B,s (t, x, x)ωvol(x)−

∫
M

trKodd
B,s (t, x, x)ωvol(x).

The above results aboutD2
B,s imply results about the first order operatorDB,s. The spectrum ofD2

B,s is
nonnegative; letEλ2 be an eigenspace ofD2

B,s with eigenvalueλ2. Then(DB,s+λ)Eλ2 and(DB,s−λ)Eλ2

are finite-dimensional orthogonal eigenspaces ofDB,s with eigenvaluesλ and−λ, respectively. Since
DB,s is the restriction of the first order elliptic operator

Ds = d + δ + ε+ s
(
i(V )+ V �∧)

,

the subspaces(DB,s±λ)Eλ2 are spanned by smooth eigenforms. Moreover, there is an orthonorma
of L2(Ω∗

B(M)) consisting of such smooth eigenforms.
The operators∂

∂t
− iD∗

s and ∂
∂t
+ iD∗

s are strongly hyperbolic, so our initial value problem has a uni
solution (see [3, Sections 69–74], [8, Chapters IV–V], [10, Chapter 6], [15, Section 6.5]). Thus, we
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the function eitD
∗
s u to be the unique solution to the initial value problem (thegeneralized traveling wave

equation)(
∂

∂t
− iD∗

s

)
f (t, x)= 0 for all t > 0, x ∈M,

f (0, x)= u(x) for all x ∈M.

SinceDs maps basic forms to basic forms,PDsP =DsP , andPD∗
s P = PD∗

s ; the form eitDs u is basic
for a given basic formu. Moreover,

∂

∂t

(
eitDs u

)= iDs

(
eitDsu

)= iDB,s

(
eitDs u

)
,

so that eitDB,s u := eitDs u is a solution to thebasic traveling wave equation with the appropriate initia
condition:(

∂

∂t
− iDB,s

)
β(t, x)= 0 for all t > 0, x ∈M,

(3.4)β(0, x)= u(x) ∈Ω∗
B(M).

Then eitDB,s u and e−itDB,s u are both solutions of the basic wave equation

(3.5)

(
∂2

∂t2
+D2

B,s

)
β(t, x)= 0.

Because of the results concerning∂
∂t
− iDs , the solutions to these wave equations exist and are un

with respect to the appropriate initial conditions (bothβ(0, x) and ∂
∂t
β(0, x) must be specified for th

basic wave equation).
We now prove some analytic results about the operatorsDB,s and similar operators; we include proo

only where the standard proofs do not translate directly to the basic case. LetLp = Lp(Ω∗
B(M)) denote

theLp-norm closure of the space of smooth basic forms, and letWk =Wk(Ω∗
B(M)) denote the closur

of the space of these basic forms under the Sobolev(k,2)-norm. Let‖ · ‖p and‖ · ‖k,2 denote the norm
on these spaces.

Lemma 3.4. Let D be a strongly elliptic, first order operator on Ω∗(M) that restricts to an operator
on Ω∗

B(M). Suppose that the restriction of D is formally self-adjoint on Ω∗
B(M). Then, for some c > 0,

‖(D2+ 1)α‖k,2 � c‖α‖k+1,2 for every basic form α.

Proof. We use induction onk. Fork = 0, we clearly have that∥∥(
D2+ 1

)
α
∥∥

0,2=
(〈
D2α,D2α

〉+ 2〈Dα,Dα〉 + 〈α,α〉)1/2 � ‖α‖0,2.

Similarly, ‖(D2+1)α‖0,2 �
√

2‖Dα‖0,2. By ellipticity, there existc1 > 0 andc2 � 0 (independent ofα)
such that

√
2‖Dα‖0,2 � c1‖α‖1,2− c2‖α‖0,2. Thus,

∥∥(
D2+ 1

)
α
∥∥

0,2 �
(

c1

1+ c

)
‖α‖1,2.
2
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self-
Assume that the conclusion is true for 0� k � m. Then∥∥(
D2+ 1

)
α
∥∥
m+1,2 � c1

∥∥(
D2+ 1

)2
α
∥∥
m−1,2 by definition of Sobolev norm

� c2

∥∥(
D2+ 1

)
α
∥∥
m,2 by the induction hypothesis

� c3‖α‖m+2,2− c4‖α‖m+1,2 by ellipticity,

for positive constantsc1, c2, and c3 and for c4 � 0, all independent ofα. Also, it follows from our
induction hypothesis that‖(D2+1)α‖m,2 � c5‖α‖m+1,2 for somec5 > 0. Finally, by the definition of the
Sobolev norm, there exists a positive constantc6 such that∥∥(

D2+ 1
)
α
∥∥
m+1,2 � c6

∥∥(
D2+ 1

)
α
∥∥
m+1,2+

c6c4

c5

∥∥(
D2+ 1

)
α
∥∥
m,2 � c6c3‖α‖m+2,2,

whence the result follows.

Lemma 3.5. Let D be as in Lemma 3.4. Then there exists a constant c > 0 such that ‖(D2+ 1)α‖k,2 �
c‖α‖k+2,2 for every basic form α.

Proof. By ellipticity, there existc1 > 0 andc2 � 0 such that‖(D2+ 1)α‖k,2 � c1‖α‖k+2,2− c2‖α‖k+1,2.
By Lemma 3.4, there existsc3 > 0 such that‖(D2+ 1)α‖k,2 � c3‖α‖k+1,2. Thus∥∥(

D2+ 1
)
α
∥∥
k,2 �

(
c1

1+ c2
c3

)
‖α‖k+2,2. ✷

Remark 3.6. Observe that if the coefficients of the operatorD depend polynomially on a parameters,
then the constants in the inequalities of the lemmas above can be chosen to depend polynomias.
Also, the results of Lemmas 3.4 and 3.5 extend to much more general situations; the operatorD may
be any strongly elliptic, first-order operator acting on smooth sections of a vector bundle over a c
manifold such that the restriction ofD to a subspace consisting of smooth sections is formally
adjoint.

Lemma 3.7 (Basic Sobolev embedding theorem).If a > n
2 , then Wa ⊂ L∞. Also, Wa+k ⊂ Ck for k > 0.

Proof. The standard proof (see [14]) works for the basic case.✷
Lemma 3.8. Define Lβ(α)=

∫
M
(α,β)ωvol. Then the map β �→ Lβ defines a norm-preserving injection

of L1(Ω∗
B(M)) into (L∞(Ω∗

B(M)))∗.

Proof. The standard proof (see [14]) works for the basic case.✷
Recall that a subset of a foliation is calledsaturated if it is a union of leaves.

Lemma 3.9. Let U be a saturated open set in a Riemannian foliation (M,F). Let P :L2(Ω∗(M))→
L2(Ω∗

B(M)) be the orthogonal projection. Then for every f ∈C∞(M),∫
U

fωvol =
∫
U

Pfωvol.
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n

2],
Proof. Let {ηε} be a family of smooth basic functions approximating (inL2) the characteristic functio
of U as ε→ 0 (see the results of [12] and [9]). Then

∫
M
f ηεωvol =

∫
M
P(f ηε)ωvol =

∫
M
(Pf )ηεωvol

sinceηε is basic [12]. We then apply the dominated convergence theorem.✷
Let (· , ·) denote the pointwise inner product of forms. The following two results apply toDB,s , since

DB,s is the restriction ofDs = d + δ+ ε+ s(i(V )+ V �∧) to basic forms and sincePεP = 0 (see [12]).

Lemma 3.10. Let D be a first order operator on Ω∗(M) of the form D = d + δ +Z1+Z2, where

(1) D restricts to an operator on Ω∗
B(M);

(2) The operator Z1 is zeroth order and satisfies PZ1P = 0, where P is the orthogonal projection from
L2(Ω∗(M)) to L2(Ω∗

B(M));
(3) The operator Z2 is zeroth order and is formally self-adjoint with respect to the pointwise inner

product of forms.

Let B(L,R) denote the set of points of distance less than R from a fixed leaf closure L; assume that
R is sufficiently small to avoid the cut locus of L. Let β be a basic form, and let βt = eitDβ be the
corresponding solution to the basic traveling wave equation as in (3.4). Then, for 0 � t < R, the function

f (t)=
∫

B(L,R−t )
(βt , βt )ωvol

is a decreasing function of t .

Proof. We have
df

dt
=

∫
B(L,R−t )

(
(iDβt , βt)+ (βt , iDβt)

)− ∫
S(L,R−t )

(βt , βt ),

whereS(L, r) is the set of points of distanceR from the leaf closureL. Observe that

(iDβt , βt)+ (βt , iDβt )=
((
i(d + δ+Z1+Z2)βt , βt

)+ (
βt , i(d + δ +Z1+Z2)βt

))
= i

[(
(d + δ)βt , βt

)− (
βt , (d + δ)βt

)]+ i
[
(Z1βt , βt)− (βt ,Z1βt )

]
,

sinceZ2 is formally self-adjoint with respect to(· , ·). By [14, proof of Proposition 2.9],

i
[(
(d + δ)βt , βt

)− (
βt , (d + δ)βt

)]= iδωt ,

whereω is the one-form defined byωt(X)=−(X.βt , βt ) := −((X�∧− i(X))βt , βt ). Then∫
B(L,R−t )

(
(iDβt , βt )+ (βt , iDβt )

)= ∫
B(L,R−t )

iδωt + i
[
(Z1βt, βt )− (βt ,Z1βt )

]

=
∫

B(L,R−t )
iδωt + iP

[
(Z1Pβt , βt)− (βt ,Z1Pβt)

]
,

which follows from Lemma 3.9 and the fact thatβt is basic. Furthermore, by the results of [1
P [(Z1Pβt , βt) − (βt ,Z1Pβt)] = (PZ1Pβt , βt) − (βt ,PZ1Pβt ). SincePZ1P = 0 by hypothesis, the
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divergence theorem yields

df

dt
= i

∫
B(L,R−t )

δωt −
∫

S(L,R−t )
(βt , βt )= i

∫
S(L,R−t )

ωt (N)−
∫

S(L,R−t )
(βt , βt ),

whereN is the unit vector field normal toS(L,R− t) with orientation chosen compatibly with the choi
of orientation ofS(L,R − t). Locally ‖ωt(N)‖2 = ‖(N.βt , βt)‖2 � (βt , βt )(N.βt ,N.βt ) = (βt , βt )

2.
Sincedf

dt
is real, we conclude thatdf

dt
� 0. ✷

Proposition 3.11 (Unit propagation speed).Let D be as in Lemma 3.10. Then for any β ∈Ω∗
B(M), the

support of eitDβ lies within a distance |t| of the support of β.

Proof. One easily checks that such an operatorD is formally self-adjoint on the space of basic form
and eitDe±isDβ = ei(t±s)Dβ; thus, it is sufficient to prove the result for small positivet . Sinceβ is basic,
the support ofβ and its complement are saturated. Since(M,F) is a Riemannian foliation and sinceM
is compact, for every leaf closureL, there exists a tubular neighborhood andR > 0 such that for every
leaf closureLx in that tubular neighborhood, the setB(Lx,R) of points of distance less thanR from Lx

misses the focal locus and cut locus ofLx . Choose anyx ∈M that is at a distanceR or more from the
support ofβ; let Lx denote the leaf closure containingx. Since(M,F) is Riemannian, the setB(Lx,R)

is also disjoint from the support ofβ. Then∫
B(Lx,R)

(β,β)= 0�
∫

B(Lx,R−t )

(
eitDβ,eitDβ

)
for 0< t < R,

by Lemma 3.10. Hence eitDβ = 0 atx for 0< t < R.

Lemma 3.12. Let D be as in Lemma 3.10, and let φ :R→R be a rapidly decreasing even function. Then
φ(D) has a smooth kernel k(x, y) that is basic in each factor and satisfies k(x, y)= k(y, x).

Proof. The operatorφ(D) is a bounded, self-adjoint operator onL2(Ω∗
B). By Lemmas 3.4 and 3.5,φ(D)

mapsL2(Ω∗
B) intoWk for everyk > 0. By Lemma 3.7, this impliesφ(D) mapsL2(Ω∗

B) to smooth basic
forms. Using the fact thatD is formally self-adjoint onΩ∗

B(M), the standard proofs are easily adapted
show the existence and properties ofk(x, y) (see [14, Lemma 5.6]). ✷

The index of a Fredholm operator is a homotopy invariant; we prove a similar result for the ope
DB,s on basic forms. The operators(@′s)∗ =@j + δε∗ + ε∗δ+ s(Z′)∗ + s2‖V ‖2 depend smoothly on th
parameters, the vector fieldV , and the metric. Therefore the kernels̃Keven

s (t, x, y) andK̃odd
s (t, x, y) are

smooth in these parameters as well. Since the mapβ �→ Pβ is continuous,Keven
B,s (t, x, y) andKodd

B,s (t, x, y)

are continuous ins, V , and the metric. By (3.3) and the fact that the index is an integer, we have s
the following:

Proposition 3.13. χB(M,F)= index(DB,s :Ωeven
B (M)→Ωodd

B (M)) for all s ∈R.

Let φ be a smooth, rapidly decreasing function on[0,∞) with φ(0)= 1. Thenφ(D2
B) is a trace class

operator. Let

µj = tr
(
φ
(
D2

B

)∣∣
L2(Ω

j
(M))

)
.

B
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By adapting the argument of [14, Chapter 12] for the standard case, we obtain

Theorem 3.14 (Basic Morse inequalities).The numbers µj and βj = dimH
j

B(M,F) satisfy the following
system of inequalities:

β0 �µ0,

β1− β0 �µ1−µ0,

β2− β1+ β0 �µ2−µ1+µ0,

etc., and the equality

χB(M,F)= index
(
DB :Ωeven

B (M)→Ωodd
B (M)

)= q∑
j=0

(−1)jβj =
q∑

j=0

(−1)jµj .

Proof. The proof is identical to the proof of the standard case in [14, Chapter 12], replacingd with dB
and the standard Hodge theorem with the basic Hodge theorem.✷

Let

µeven
s = tr

(
φ
(
D2

B,s

)∣∣
L2(Ωeven

B (M))

)
, µodd

s = tr
(
φ
(
D2

B,s

)∣∣
L2(Ωodd

B (M))

)
.

Combining the proof of the standard Morse inequalities with Proposition 3.13, we have the foll
result.

Proposition 3.15. χB(M,F)= µeven
s −µodd

s for all s ∈R.

Fix a numberρ > 0, and choose a positive, even Schwartz functionφ with φ(0)= 1 and such that th
Fourier transformφ̂(ξ )= ∫

R
e−ixξφ(x) dx is supported in the interval[−ρ,ρ]. Sinceφ is even,φ(DB,s)

makes sense as a smoothing operator, and the basic Euler characteristic satisfies Proposition 3.

µeven
s = tr

(
φ(DB,s)|L2(Ωeven

B (M))

)
and µodd

s = tr
(
φ(DB,s)|L2(Ωodd

B (M))

)
.

Let Crit(V ) be the (finite) union of critical leaf closures ofV in M .

Lemma 3.16. On the complement of a 2ρ-neighborhood of Crit(V ), the basic kernel of φ(DB,s) satisfies
kB,s(x, y)→ 0 uniformly as s→∞.

Proof. This proof is the same as [14, Lemma 12.10], but we include some details here beca
subtleties. Choose a constantC so that‖V (x)‖� C > 0 for all x in the complement of aρ-neighborhood
of Crit(V ). By formula (3.2) and the remarks following that equation,〈D2

B,sβ,β〉� C2s2

2 〈β,β〉 for every
β ∈Ω∗

B(M) that is supported on the complement of such a neighborhood and for sufficiently larges. Let
H denote the Hilbert space ofL2 basic forms that vanish on aρ-neighborhood of Crit(V ). ThenD2

B,s

is a positive symmetric operator on a dense subset ofH, so it extends to a self-adjoint operatorA onH
satisfying the same inequality above.

Let ω be a basic form supported on the complement of a 2ρ-neighborhood of Crit(V ), and let

ωt = cos(tDB,s)ω= 1(
eitDB,s + e−itDB,s

)
ω,
2
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which is a solution to the generalized wave equation (3.5) corresponding to the operator@′s with initial
conditionsω0 = ω, ∂

∂t
ω0 = 0. The family of formsωt is the unique solution to this generalized wa

equation as well, by the statements before and after (3.5). Note that the formula above implies thωt is
basic.

By the unit propagation speed property of the basic wave equation (Proposition 3.11),ωt is identically
zero on theρ-neighborhood of Crit(V ) if |t|< ρ. This implies thatD2

B,sωt = Aωt for |t|< ρ, so thatωt

is the unique solution to the system

∂2

∂t2
ωt +Aωt = 0; ω0= ω,

∂

∂t
ω0= 0.

We may therefore writeωt = cos(t
√
A)ω.

Let φ be a real-valued function with the following properties:

(1) φ is a positive even Schwartz function;
(2) φ(0)= 1;
(3) the Fourier transform̂φ(t) is supported in the interval[−ρ,ρ].

For each nonnegative integerm, defineφm by the formula

φm(λ)=
(
1+ λ2

)2m
φ(λ);

note that eachφm satisfies (1)–(3).
For a basic formω that is supported on the complement of the 2ρ-neighborhood of Crit(V ),

φm(DB,s)ω= 1

2π

ρ∫
−ρ

φ̂m(t)
(
eitDB,sω

)
dt

= 1

2π

ρ∫
−ρ

φ̂m(t)
(
cos(tDB,s)ω

)
dt sinceφ̂m is even

= 1

2π

ρ∫
−ρ

φ̂m(t)
(
cos

(
t
√
A

)
ω

)
dt

(3.6)= φm

(√
A

)
ω.

The operator
√
A is positive and has operator norm is bounded below byCs/

√
2 for s sufficiently

large. Thus, the operator norm ofφm(
√
A) (as an operator fromH to itself) is bounded above by

cm(s)= sup

{∣∣φm(λ)
∣∣: λ � Cs√

2

}
.

It is clear thatcm(s) is rapidly decreasing ass→∞. By (3.6),∥∥φm(DB,s)ω
∥∥

2 � cm(s)‖ω‖2

for every basic formω supported on the complement of a 2ρ-neighborhood of Crit(V ).
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Next, let Lp = Lp(Ω∗
B(M)) denote theLp-norm closure of the space of smooth basic forms,

let Wk = Wk(Ω∗
B(M)) denote the closure of the space of such basic forms under the Sobolev(k,2)-

norm. By the basic elliptic estimates (Lemma 3.5), the operator norm of(1+ D2
B,s)

−1 :Wk → Wk+2

is bounded by a polynomial ins. The basic version of the Sobolev embedding theorem (Lemma
implies that(1+D2

B,s)
−k :L2→ L∞ is a bounded map whose operator norm is bounded by a polyno

in s if k > n
4. Using basic duality (Lemma 3.8) and essential self-adjointness ofDB,s, we see tha

(1+D2
B,s)

−k :L1 → L2 is also a bounded map whose operator norm is bounded by a polynomias
wheneverk > n

4 . Note that all of the statements above hold for the operatorA as well as forD2
B,s. Now,

given a basic formω supported on the complement of a 2ρ-neighborhood of Crit(V ) andk > n
4,∥∥φ(DB,s)ω

∥∥∞ = ∥∥φ(√
A

)
ω

∥∥∞∥∥(1+A)−k(1+A)kφ
(√

A
)
(1+A)k(1+A)−kω

∥∥∞
�

∥∥(1+A)−k
∥∥
L2→L∞ck(s)

∥∥(1+A)−kω
∥∥

2

�
∥∥(1+A)−k

∥∥
L2→L∞ck(s)

∥∥(1+A)−k
∥∥
L2→L1‖ω‖1

� p(s)ck(s)‖ω‖1,

wherep(s) is a polynomial ins. Next, sinceφ is rapidly decreasing,φ(DB,s) has a continuous bas
kernelkB,s(x, y) (Lemma 3.12), and we have the inequality∥∥kB,s(x, ·)∥∥∞ � sup∫ ‖ω‖=1,x∈M

∥∥∥∥
∫
M

kB,s(x, y)ω(y)ωvol(y)

∥∥∥∥ � p(s)ck(s)

from the above. Thus,kB,s(x, y)→ 0 uniformly ass→∞. ✷
Let (M,F) be a Riemannian foliation, letV be aF -nondegenerate basic vector field, letL be a

leaf closure ofF , and letOL = OL(V ) denote the orientation line bundle ofV at L. We denote
by Ω∗(L,F,OL) the space of differential forms onL with values inOL; there is a well-defined
differentiald on this space that is simply the exterior derivative whenOL is trivial (see [2, Section I.7])
Locally an element ofΩ∗(L,F,OL) can be written as a sum of tensorsω⊗ s, whereω is an ordinary
differential form onM ands is a smooth section ofOL. LetX be a vector field onL. Then we can locally
define interior multiplicationi(X) onΩ∗(L,F,OL) by decreeing thati(X)(ω⊗ s) = (i(X)ω)⊗ s and
extending linearly. It is straightforward to check that this definition of interior product is independ
the trivialization ofOL(V ), and so we may therefore make the following definitions:

Definition 3.17. Let M , F , V , andL have the properties listed in the previous paragraph. The s
of basic differential forms with values inOL is denotedΩ∗

B(L,F,OL), and is defined to be th
subcomplex of formsα in Ω∗(L,F,OL) with the property thati(X)α = 0 andi(X)dα = 0 for every
vector fieldX on L tangent to the leaves ofF restricted toL. The cohomology of this subcomple
is denotedH ∗

B(L,F,OL) and called the basic de Rham cohomology ofL with values inOL. Finally,
the basic Euler characteristic ofL with values inOL is defined by the formulaχB(L,F,OL) =∑

k(−1)kdimHk
B(L,F,OL).

Theorem 3.18 (Basic Hopf Index theorem).Let M , F , and V be as in Definition 3.17. For each critical
leaf closure L, let indL(V ) be the index of V at L. Then

χB(M,F)=
∑

indL(V )χB(L,F,OL).
Lcritical
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Proof. Without loss of generality, we may assume thatV is a basic normal vector field (otherwise, proje
to NF ). By Proposition 3.15, we have thatχB(M,F)= lims→∞(µeven

s − µodd
s ), which may be obtained

by integrating the traces of the corresponding kernels ofφ(D2
B,s)|L2(Ωeven

B (M)) andφ(D2
B,s)|L2(Ωodd

B (M)). By
Proposition 3.16, the kernels of these operators go to zero uniformly on the complement of a fi
arbitrarily small neighborhood of the critical leaf closures ofV . For each critical leaf closureL, let ψL

be a smooth, radial, basic function that is identically 1 in a tubular neighborhood of radius 2ρ aroundL
and supported within a tubular neighborhood of radius 3ρ (assume that we have chosenρ small enough
so that this is possible for eachL). Then we have that

χB(M,F)=
∑

Lcritical

lim
s→∞ tr

(
ψLφ

(
D2

B,s

)∣∣
L2(Ωeven

B (M))

)− tr
(
ψLφ

(
D2

B,s

)∣∣
L2(Ωodd

B (M))

)
.

We now use Lemma 3.3 to observe thatV may be deformed without changing indL(V ) or OL so that
within a tubular neighborhood of radius 4ρ aroundL, V = ∇f for a basic functionf , such that if
indL(V )=+1 thenf has even Morse index and if indL(V )=−1 thenf has odd Morse index; again w
possibly decreaseρ so that the conclusion of this proposition holds. A unit propagation speed argu
shows that the traces are independent of the choice ofV with those properties, and thus we may calcu
the contributions from each tubular neighborhood as ifV =∇f . By the results of [1], ifD2

L is the basic
Laplacian onL with coefficients inOL, then

lim
s→∞ tr

(
ψLφ

(
D2

B,s

)∣∣
L2(Ωeven

B (M))

)= tr
(
φ
(
D2

L

)∣∣
L2

(
Ω

even+ indL(V )−1
2

B (L,F ,OL)
)
)
,

with the analogous result for the odd case. Thus,

χB(M,F)=
∑

Lcritical

tr
(
φ
(
D2

L

)∣∣
L2

(
Ω

even+ indL(V )−1
2

B (L,F ,OL)
)
)
− tr

(
φ
(
D2

L

)∣∣
L2

(
Ω

odd+ indL(V )−1
2

B (L,F ,OL)
)
)

=
∑

Lcritical

dimH
even+ indL(V )−1

2
B (L,F,OL)− dimH

odd+ indL(V )−1
2

B (L,F,OL)

=
∑

Lcritical
indL(V )=+1

χB(L,F,OL)−
∑

Lcritical
indL(V )=−1

χB(L,F,OL). ✷

Remark 3.19. If all of the bundlesOL are trivial and the critical leaf closures are leaves, then the form
simplifies to

χB(M,F)=
∑

Lcritical

indL(V ),

a formula which has the precise form of the ordinary Hopf Index Theorem.

Corollary 3.20. Suppose that there exists a basic vector field on a Riemannian foliation (M,F) that is
nowhere tangent to F . Then χB(M,F)= 0.

Corollary 3.21. Suppose that there exists a basic vector field on a Riemannian foliation (M,F) that is
nowhere tangent to F and that the codimension of F is less than 3. Then M has infinite fundamental
group.
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Proof. The hypotheses imply

χB(M,F)= dimH 0
B(M,F)− dimH 1

B(M,F)+ dimH 2
B(M,F)

= 0.

Since dimH 0
B(M,F) � 1, dimH 1

B(M,F) � 1. SinceH 1
B(M,F) injects into H 1(M) [16, Proposi-

tion 4.1], Poincaré duality and the Universal Coefficient Theorem imply that rankH1(M) � 1. The result
follows. ✷

We now illustrate Theorem 3.18 in the following examples. In each of these examples, there d
exist a basic vector field that is nowhere tangent to the foliation.

Example 3.22. Consider the sphereS 2 in spherical coordinates(θ, ϕ) ∈ [0,2π ]× [0, π ]. Letα be a fixed
irrational multiple ofπ , and letM = R× S2/ ∼, where(t, θ, ϕ)∼ (t + 1, θ + α,ϕ). The t-parameter
curves makeM into a codimension-2 foliationF , which is Riemannian with respect to the stand
metric. Observe that the leaf closures are level sets whereϕ is constant. Consider the vector field

V = (cosϕ)∂θ + (sinϕ cosϕ)∂ϕ.

This vector field is invariant under rotations inθ and is smooth onS 2, since it is the restriction of(
xz2− yz

)
∂x +

(
yz2+ xz

)
∂y +

(−x2z− y2z
)
∂z

on R
3; therefore, it is a smooth basic vector field on(M,F). The critical leaf closures for this vecto

field correspond to the poles(z=±1) and the equator(ϕ = π/2). At the north pole leafL1 (z= 1), the
matrix for VL1 is

(
1 −1
1 1

)
in

(
x
y

)
coordinates, so that indL1(V )= 1. At the south poleL−1 (z =−1), the

matrix for VL−1 is
( −1 1
−1 −1

)
in

(
x
y

)
coordinates, so that indL−1(V ) = 1. For these leaf closures, we ha

χB(L±1,F,OL±1)= 1 sinceOL±1 andF are trivial. At the equatorL0, VL0 is multiplication by−1 on
each 1-dimensional normal space toL0, so that indL0(V )=−1. The orientation bundle is the trivial co
normal bundle. Next, observe that this leaf closure is a flat torus, on which the foliation restricts
the irrational flow. Since the vector field∂θ is basic, nonsingular, and orthogonal to the foliation on
torus,

χB(L0,F,OL0)= χB(L0,F)= 0

by Corollary 3.20. By Theorem 3.18, we conclude that

χB(M,F)=
∑

Lcritical
indL(V )=+1

χB(L,F,OL)−
∑

Lcritical
indL(V )=−1

χB(L,F,OL)= (1+ 1)− (0)= 2.

In this example, one may independently verify that dimHk
B(M,F)= 1 for k = 0 ork = 2, sinceM is a

transversally oriented, taut, codimension-2 Riemannian foliation (see [16]). Also, every closed bas
form can be written asg(ϕ) dϕ for a smooth functiong such that∂

mg

∂ϕm
= 0 for evenm atϕ = 0 orπ . Every

exact basic one-form is the differential of a smooth functionh such that∂
mh

∂ϕm
= 0 for oddm atϕ = 0 orπ ;

thus, dimH 1
B(M,F)= 0. We have therefore directly computed thatχB(M,F)= 1−0+1= 2. Observe

that Corollary 3.20 implies that there does not exist a basic vector field on(M,F) that is nowhere tangen
to the leaves.
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Example 3.23. LetX be any smooth, closed manifold whose fundamental group is the free productZ∗Z

(such as the connected sum of two copies ofS 2× S1); choose a metric so that the volume ofX is one.
Let X̃ denote the universal cover ofX. Suspend an action of the fundamental group on the torus t
the manifoldY = X̃ × S1× S1/∼, where the equivalence relation is defined as follows. Leta andb be
the generators ofπ1(X), which act on the right by isometries oñX. Letα be an irrational multiple of 2π ,
and let

(x, θ1, θ2)∼ (xa, θ1+ α, θ2), and

(x, θ1, θ2)∼ (xb,2π − θ1,2π − θ2).

These actions on the torus (with the flat metric) are orientation-preserving isometries, so t
x-parameter (immersed) submanifolds form a transversally oriented, Riemannian foliation(Y,F). The
leaf closures are parametrized byθ2 ∈ [0, π ]; observe that the leaf closures corresponding toθ2= 0 and
θ2= π are not transversally oriented, even thoughF is.

We first calculateχB(Y,F) directly. As in the previous example, we observe that dimHk
B(Y,F)= 1

for k = 0 or k = 2, sinceM is a transversally oriented, taut, codimension-2 Riemannian folia
Each closed, basic one-form can be written asg(θ2) dθ2, whereg is a smooth function onS1 such that
g(2π − θ2)=−g(θ2). Since this is the differential of the well-defined basic functionf (θ2)=

∫ θ2
0 g(t) dt ,

we see that dimH 1
B(Y,F)= 0. Therefore,χB(Y,F)= 1− 0+ 1= 2.

Next, consider the basic vector fieldW = sin(θ2)∂θ2. This vector field is singular at the leaf closur
θ2 = 0 andθ2 = π (both of codimension 1), and it is orthogonal to the leaves everywhere. The ind
W at θ2 = 0 is 1, and its index atθ2 = π is −1. The polar decomposition of the linearization ofW at
θ2= 0 is simply 1∗ 1, so there are no negative eigenvectors of the orthogonal part. Thus, the orien
line bundle is trivial atθ2= 0. Therefore,

χB

({θ2= 0},F,OL

)= χB

({θ2= 0},F)= 1− 0= 1;
note that there are no closed one-forms on this leaf closure, because it is not transversally orien
polar decomposition of the linearization ofW at θ2= π is 1∗ (−1), and the orientation line bundleOπ

is simply the normal bundle to the leaf closure. This bundle is nontrivial and has no basic secti
dimH 0

B({θ2= 0},F,OL)= 0. On the other hand, lets denote a basic section of the pullback ofOπ via
the lift of the leaf closureθ2 = π to X̃ × S1 × S1; such a section exists because the pullback ofOπ

is trivial. The basic one-formdθ1 ⊗ s is closed and descends to a basic one-form onY with values
in Oπ , because the orientation-reversing action ofb changes the sign of bothdθ1 ands. It follows that
dimH 1

B({θ2= 0},F,OL)= 1. Thus,

χB

({θ2= 0},F,OL

)= 0− 1=−1.

By Theorem 3.18,

χB(Y,F)=
∑

Lcritical
indL(V )=+1

χB(L,F,OL)−
∑

Lcritical
indL(V )=−1

χB(L,F,OL)= (1)− (−1)= 2.

These calculations show that there does not exist a basic vector field on(Y,F) that is nowhere tangent t
the foliation; in fact, anyF -nondegenerate basic vector field on(Y,F) must be tangent to the foliatio
on at least two distinct leaf closures.
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Example 3.24. Let N be a smooth, four-dimensional closed manifold with finite fundamental gr
Let (M,F) be any foliation that is obtained by suspending a discrete subgroupΓ of a compact Lie
group of diffeomorphisms ofN . That is, choose a manifoldX along with a surjective homomorphis
φ :π1(X)→ Γ , and letM = X̃ × N/π1(X), whereπ1(X) acts on the universal cover̃X by deck
transformations and onN via φ. The foliationF is locally given by theX̃-parameter submanifolds
Choose metrics forX andN ; by averaging the metric onN over the Lie group of diffeomorphisms, w
may and do assume thatπ1(X) acts onN by isometries. The metric onM defined locally as the produc
of these metrics is bundle-like for the foliationF . Furthermore, this foliation is taut, so the standard fo
of Poincaré duality holds for basic cohomology (see [16]). The basic forms of(M,F) are given by forms
onN that are invariant under the discrete group of isometries, and the basic cohomology is isom
to the cohomology of invariant forms onN . Sinceπ1(N) is finite,H 1

B(M,F) is trivial. We conclude tha

χB(M,F)=
4∑

j=0

(−1)j dimH
j

B(M,F)

= dimH 0
B(M,F)+ dimH 2

B(M,F)+ dimH 4
B(M,F)

= 2+ dimH 2
B(M,F) � 2.

Theorem 3.18 implies that everyF -nondegenerate basic vector field on(M,F) must have at least tw
distinct critical leaf closures.
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